
Master Thesis

Federated event propagation in
distributed social networks

Marc Löchner
December 9, 2015

Advisor:
Dr. Josef Spillner

Supervisor:
Prof. Dr. rer. nat. habil.

Dr. h. c. Alexander Schill

Fakultät Informatik, Institut für Systemarchitektur, Lehrstuhl Rechnernetze

AUFGABENSTELLUNG FÜR DIE MASTERARBEIT
Name, Vorname: Löchner, Marc
Studiengang: Medieninformatik '10 Matrikelnummer: 2951518
Forschungsgebiet: Service and Cloud

Computing
Forschungsprojekt: DaaMob

Betreuer: Dr.-Ing. J. Spillner Externe(r) Betreuer: ---
Verantwortlicher Hochschullehrer: Prof. Dr. rer. nat. habil. Dr. h. c.

Alexander Schill
Zweitgutachter: Dr.-Ing. Daniel Schuster
Beginn am: 01.05.2015 Einzureichen am: 08.10.2015

Thema: Federated Event Propagation in Distributed Social Networks

ZIELSTELLUNG

Distributed and in particular federated infrastructures are increasingly common on
the Internet. As opposed to centralised systems, they pose challenges concerning
the shared access to data and information. Federated social networks are widely
affected due to the high dynamics in content production or modification and churn
among the participants.
A representative problem is the propagation of event invitations among the
participants of instances (pods) of the social network software Diaspora. This is a
major obstacle for potential users compared to having such functionality integrated
in centralised social networks. In this master thesis, the RSVP event invitation
mechanism shall be analysed and implemented for Diaspora. The associated
challenges and solution approaches shall be generalised for other kinds of user-
created content in federated systems.

SCHWERPUNKTE

● Analysis of current distributed event invitation protocols

● Concept for a network-integrated RSVP functionality

● Implementation of RSVP in Diaspora

● Elaboration on the generalisation to other content and other networks

Unterschrift des verantwortlichen Hochschullehrers
Prof. Dr. rer. nat. habil. Dr. h. c. Alexander Schill

Declaration of Authorship

I herewith declare that I have produced this thesis without the prohibited assis-
tance of third parties and without making use of aids other than those speci�ed;
notions taken over directly or indirectly from other sources have been identi�ed
as such. This thesis has not previously been presented in identical or similar
form to any other German or foreign examination board.

The thesis work was conducted from May 1, 2015 to December 9, 2015, under
the supervision of Prof. Dr. rer. nat. habil. Dr. h. c. Alexander Schill at the
Department of Computer Networks, Technische Universität Dresden.

Marc Löchner

Abstract

Currently common social network services lack a reasonable amount of pri-
vacy due to their centralization. Distributed social networks are considered an
alternative to these services. However, due to their limited feature set, current
implementations struggle to keep up with their mostly commercial competitors.
Limitations derive from scarce �nancial resources as well as challenges due to
the decentralized network topology and consequential complexity to propagate
user generated data.

A representative problem is the propagation of social events within a dis-
tributed social network. While commercial services provide this feature today,
currently available software to establish distributed social networks have not
been able to advance. Deploying social event functionality to them is challeng-
ing, as its rather complex data structure meets its federation within a distributed
network.

This thesis introduces a concept to establish social event functionality in dis-
tributed social networks, including its relations to multiple users as well as basic
administrative aspects. Furthermore, it provides a proof-of-concept implemen-
tation using the Ruby on Rails application Diaspora as a representative software
for distributed social networks. The solution is evaluated in terms of usability,
privacy and performance, summed up with a portrait of ambivalent participation
experiences in the free and open source software developer community.

Contents

1 Introduction 5
1.1 Presumption . 6
1.2 Outline . 8

2 Fundamentals 9
2.1 Distributed social networks . 9
2.2 DSN related work . 10
2.3 Free and open source software 12
2.4 Distributed software development 13

3 Diaspora DSN Analysis 17
3.1 Comparison to other DSN software 17
3.2 Architecture overview . 18
3.3 Federation . 19
3.4 Applied software components 21
3.5 User Interface . 22
3.6 Development status . 22

4 Concept 25
4.1 Model development strategy . 25
4.2 Properties . 26
4.3 Administration . 27
4.4 Relations to an event . 28
4.5 Federation . 30
4.6 Feature set . 31
4.7 Alternative approach using iCalendar 33
4.8 User Interface . 34

5 Implementation 37
5.1 MVC Integration . 37
5.2 Database migration . 40

3

5.3 Routing . 41
5.4 Branching . 42
5.5 Testing . 43
5.6 About GUIDs . 43

6 Evaluation 45
6.1 RESTful API performance . 45
6.2 Performance . 50
6.3 Privacy . 51
6.4 Concept assembly . 51
6.5 Implementation Experience . 53
6.6 Open Source Software Development 53

7 Conclusion 55
7.1 Summary . 55
7.2 Outlook . 56

A Technical documentation 59
A.1 Development setup . 59
A.2 Installation process . 60

B Code examples 61
B.1 Send an event . 61
B.2 Receive an event . 63

Acronyms 65

Bibliography 67

4

Chapter 1

Introduction

Common social network services like Facebook or Twitter run their services from
a number of data centers around the world, controlled by either themselves or
other commercial providers. The data stored in those data centers are either
synchronized or loaded from their source when needed. Still, they are stored on
hardware controlled by the provider (Menon, 2012).

One can consider this as a disadvantage regarding privacy aspects of their
users. Those services are usually run by commercial enterprises, whose primary
goal is to gain pro�t. As a trade-o� for providing their services to their users
free of charge, the companies analyze the data supplied by the users, their access
patterns and general activities to categorize them and generate substantial digital
pro�le images of them. Additional to the gaining of explicit knowledge about a
person, more implicit knowledge can be inferred via the person’s contacts. It is
possible to precisely determine habits and needs not only of a single person, but
of the entirety of the service’s user base (i.e. Abel et al., 2011).

The possession of that knowledge makes those companies very powerful.
On the one hand, they can advertise third-party products to very speci�c tar-
get groups, on the other hand, they can determine behavioral patterns among
the society (Anderson, 2008) and even to predict future behavior (Rogers, 2008).
This is very problematic for a social coexistence, as it provides large potential
to be abused, mainly to gain even more knowledge of the user base, undermine
potential competitors, and, thus, develop an awkward concentration of power.

As the Snowden revelations unveiled, not only commercial enterprises are
seeking for deep knowledge of the habits and needs of the world’s population,
but governments as well (Landau, 2013). A government supplied with such deep
knowledge of their people has the power to investigate and control social struc-
tures. It may lead to targeted spreading of manipulated information, with the
intent to provoke fear, uncertainty and doubt among the people. It may suppress
minorities or protest movements in early stages and makes executives gain ulti-

5

mate control over the society (Chambliss, 1995). In theory, the opposite should
be the case.

Pointing out the fact that storing personal information of a large user base
in a centralized structure is very dangerous, it is obvious that decentralized data
structures can help to preserve informational self-determination1 of a single user
as well as to keep basic principles of democracy in place (Kayes and Iamnitchi,
2015).

Being decentralized, free and open, e-mail has been the primary communi-
cation platform for about two decades. The rise of smartphones as the primary
communication medium has unveiled its downsides and let other technologies
like social networks succeed. Unfortunately, during the last decade, centralized
services have gained more attention due to �nancial backing of venture capital
investment (Dam, Nelson, and Lozinski, 2008) and the network e�ect (Varian and
Shapiro, 1999).

To maintain informational self-determination for individuals and protect the
society from overwhelming governmental or commercial power, it is crucial to
advance development of free and open source distributed social networks (DSNs)
to be a desirable alternative to centralized services.

1.1 Presumption
A representative of free and open source DSN platforms is Diaspora. Not being
owned by anyone in particular, Diaspora consists of a number of independent
instances called pods, which interact with each other to become a social network
(see �gure 1.1).

Figure 1.1: Independent Diaspora instances form a DSN

The fundamental characteristics of a DSN is the decentralization of hosted
data. Unlike centralized services, in DSNs like Diaspora the user-speci�c data is
stored only on the instance, a user has signed on to. Users as well as administra-
tors of other instances can only access data that is o�ered to them.

1Informational self-determinations is the right of the individual to decide what information
about himself should be communicated to others and under what circumstances. Westin (1970)

6

Hosted data must be speci�ed among their dedication. Besides trivial content
like the pro�le page of a user with any directly user-related data, there are more
sophisticated data structures that are addressed to be shared with other users.

The most common type of that data is commonly known as post or status
update. More speci�ed data may be shared images, videos or any other type of
extended media. Those are usually implemented as attachments to a post and
are owned by their dedicated author.

Another common type of data structure, that may be shared between users, is
a social event. The characteristics of an event as a sharable data structure may be
de�ned as a complex set of individual data, as there are date and time, a location,
a title and description, a poster, entry fees etc. Furthermore, there is a wide range
of data addressing relations between events and people, as there are invitations,
attendance, and even more special dedications regarding administration issues,
as �gure 1.2 shows exemplarily.

EVENT

- Date
- Location
- ...

Alice

Bob

creates
invites to

Carol
changes

date
data
between
pods

Dave

attends

sync

Figure 1.2: Event data structure

While posts are the most common sharable data structure among any of to-
days major social networks, events are less common and today mostly seen on
Facebook, which makes it one of their most frequently used features (Constine,
2015). Regarding privacy concerns, it is desirable to have events become a com-
mon data structure in DSNs as well.

Deploying social event functionality to DSNs is challenging, as the complex-
ity of its data structure meets its federation among a distributed network topol-
ogy. Sophisticated conception to design relations between event data and user
data as well as eligible protocols to distribute the data among individual instances
within the DSN are required.

This work is dedicated to design a concept to deploy social events to a DSN
and develop a proof-of-concept implementation. As a representative for a DSNs,
Diaspora is utilized as an example application. It is to be extended with an event
feature, that can be deployed and operated between individual instances. Any
gained �ndings should subsequently be generalized for other data structures to
be shared in any DSN.

7

1.2 Outline
Within the remaining chapters of this thesis, the user is guided through the entire
progress.

Chapter 2 gives an overview of DSN related work and introduces fundamen-
tal basics of modern web software development, as they are required to con-
tribute to Diaspora.

A close software analysis of the Diaspora DSN, its key features and current
status will be reviewed in chapter 3.

Based on this analysis, chapter 4 introduces the concept to integrate events
into Diaspora in detail. All important aspects including relations and federation
as well as alternative and revoked approaches are discussed.

In chapter 5 the implementation of the concept is documented. It focuses on
challenging aspects during the development and ties on fundamentals mentioned
in chapter 2.

The evaluation of the implementation work is discussed in chapter 6. It ex-
amines the functionality of the implemented work, while focusing on features
elaborated in chapter 4.

Chapter 7 holds overall conclusions, lessons learned, outlook and a summary
of this thesis.

8

Chapter 2

Fundamentals

As the work on this thesis is also dedicated to expose contribution to free and
open source software (FOSS) projects, besides introducing DSN related funda-
mentals this chapter also discusses elementary FOSS-related aspects: reasons to
develop open source software, the work�ow on social coding platforms, models
for development using version control, and test driven development are covered.

2.1 Distributed social networks

Baran (1964) �rst introduced a di�erentiation of the terms centralized, decentral-
ized and distributed regarding computer networks (see �gure 2.1).

Peeters (2013) then did some research on the di�erences between the terms
distributed and federated. He points out that there is not really a clear distinction
to make, as di�erent researchers provide di�erent and yet contradictory views
about the terms. Within this work, the term distributed will be used to describe
the network topology, while federation will refer to the diaspora feature, that is
discussed in section 3.3.

Boyd and Ellison (2010) de�ne social network sites as web-based services that
allow individuals to (1) construct a public or semi-public pro�le within a bounded
system, (2) articulate a list of other users with whom they share a connection, and
(3) view and traverse their list of connections and those made by others within
the system.

Publishing individual content to a de�ned or unde�ned subset of members
of the network, commenting, replying, direct messaging, like/faving, updating
status etc. (Dhekane and Vibber, 2011) should be added to that de�nition.

DSNs di�er from centralized networks in the fact, that the term network is
not just virtually focused on the relationships between their users, but actually
describes the structure of the hosted data.

9

Figure 2.1: Types of networks (Baran, 1964, p. 4), reference via Peeters (2013)

There is an unlimited number of servers running a software that interacts
with other instances of the software via given protocols on other servers spread
all over the world participating in that network.

Users may connect to other users not just by their usernames but rather like
user@domain. That form is familiar from e-mail, a similar structured distributed
communication network.

Although it is not a crucial feature, distributed social network platforms usu-
ally ship as free and open source software (see section 2.3), the protocols used
tend to be free and open as well.

2.2 DSN related work
Social network services have become a major tool for communication and col-
laboration worldwide. The ever growing interest in them and evolving use cases
brings new challenges and practical research problems. Massive adoption of mo-
bile and wireless devices, and evolution of peer-to-peer solutions raise attention
to partially or fully decentralized social networks. This section draws attention
to this progress by introducing recent research results on DSN related subjects.

10

Maka (2011) used the open source software stack BuddyCloud (2015) to build
up a DSN that implements Federation using the Publish-Subscribe feature of the
Extensible Messaging and Presence Protocol (XMPP). He stated that the protocol
stack is suitable for that task, until it comes to distribution of binary data, where
other protocols like the Hypertext Transfer Protocol (HTTP) work better.

Dhekane and Vibber (2011) �rst introduce a model for friend �nding on fed-
erated social networks called Talash using the open source software StatusNet
(2015). They showed a mechanism how to �nd contacts on that network through
the so-called Friends-of-a-Friend information. Clustering a DSN into communi-
ties, each centered around one user, allows expansion of that user’s DSN in any
other domains.

Liu et al. (2012) de�ne and investigate event-based social networks (EBSNs).
Their unique characteristics is stated as the correlation between online and o�ine
social interactions within the network. As event invitations are made online and
the actual attending to an event obviously happens o�ine in the real world, the
members of a certain network may have closer relations as members of other so-
cial networks. They also analyzed the information �ow depending on the size of
the audience to an event invitation as well as the distance between the user’s and
the event’s location, which resulted in various models for attendance prediction.

A recent research project by Konforty et al. (2015) on a DSN is called Synereo.
They present social content that is relevant and actionable based on the user’s
own estimation of value. Furthermore, they discuss the relationship between
attention, value, and social agency in order to motivate the central mechanisms
for content �ow on the network. A network model showing the mechanics of
the network interactions, as well as the compensation model enabling users to
promote content on the network and receive compensation for attention given
to the network, is introduced.

In November 2015, a workshop on DSNs has taken place for the �rst time
in Miami, Florida (DeSN15, 2015) , that is to serve as a forum for researchers
or professionals from both academia and industry to exchange new ideas, dis-
cuss new solutions, and share their experience in the design, implementation,
analysis, experiment or measurement related to decentralized social networks.
Papers accepted to this workshop cover gossiping on browsers without a server
(Carvajal-Gómez et al., 2015), service discovery for spontaneous communities in
pervasive environment (Nejma et al., 2015) and a network and application frame-
work for spontaneous and ephemeral social networks (Boutet et al., 2015).

Besides this related academic work, there is a wide range of DSN software
currently in development. A broad comparison list is available on Wikipedia
(2015). This is discussed particularly in section 3.1. However, none of the previ-
ously published work or released DSN software has discussed or featured feder-
ated social events yet. It is the premise of this thesis.

11

2.3 Free and open source software

Free software enables users to have the freedom to run, copy, distribute, study,
change and improve the software (Free Software Foundation, 2001). It refers to
the term freedom and is often explained by the distinction of sharing the meaning
with free speech as opposed to free beer.

The term open source refers to a paradigm, that describes the source code of
a software being available to the public for general usage, examination and, de-
pending on the actual licensing model, modi�cation and redistribution. It aims
at the collaborative approach, that programmers share the original source code
with others, not directly involved with the primary conception of the software,
usually referred to as the community. Within the community, any further im-
provement and creativity that is submitted back to the project will be examined
and conceivably merged.

The aspect of openness is very important for the credibility of a software. As
Hoepman and Jacobs (2007) already stated, openness of software will increase its
security. While the overall quality of the code can be examined, rated and even-
tually improved by anyone, the development of the software may be accelerated
through the wider input. Developers and users can make use of tools to validate
the source code. Users are free to judge independently about the security of the
software security.

Another important aspect for software sources to be open is the ability to
work in a team of independent developers. Dabbish et al. (2012) examined the
value of transparency for large-scale distributed collaborations and developing
communities in practice. When studying development behavior and results of
software projects on Github, they found that the technical skills and reputation
of the developers gained through the in�uence of team mates in a surprisingly
high amount.

There are a number of free software licensing models, that explicitly de�ne
the rights granted to share and modify a certain software. While classic licenses
like the GPL (Free Software Foundation, 2007a) mostly address computer pro-
grams in general, other licenses refer to more certain use cases. For example,
the AGPL (Free Software Foundation, 2007b) is explicitly designed to cover the
usage of a software via a computer network, such as web applications like Dias-
pora. There are also free licenses for user-generated content, like the CC licenses
(Creative Commons, 2002).

Still, software licensing can not enforce privacy. Therefore, technical mea-
sures like the use of DSNs have to be taken. Only a combination of DSNs and
free software licenses ensure privacy in the long run.

12

2.4 Distributed software development
When the subsistence of a software is focused on privacy, distributed software
development is crucial. As opposed to classic development approaches of central-
ized software development, in distributed version control systems like Git (2005),
there is no canonical reference code repository by design. Repositories may be
cloned in�nitely across any number of systems. Communication between them
and synchronization may be automated or performed manually.

In case of the development to move in a wrong direction, this keeps control
over the software code itself for other developers. It also prevents loss of code, in
case a repository hosting platform may become unavailable. Concerning privacy,
this ensures transparency to the code base, as it can not be compromised and
redistributed without any backup or comparison possibility.

Participating in software development with distributed version control re-
quires a certain amount of conduct for developers. The following subsections
explain the collaboration work �ow on social coding platforms, as well as di�er-
ent concepts of version control development models, and the necessity for test
driven development.

Social coding platform development

When software projects are hosted on social coding platforms (Vasilescu, Filkov,
and Serebrenik, 2013) like Github, usually a certain collaboration work �ow is
applied (see �gure 2.2).

As not everybody is granted write permissions to any project, a contributor
�rst may fork the project to his own pro�le. Within that fork he may follow any
desired development model, but should leave the branches remain the same.

To work on the project, the developer is to clone the repository from the origin
of the forked project into a local development environment. Changes are pushed
back to origin.

Once the contribution is complete, the contributor is to �le a pull-request in
the development branch of the upstream project, where the project originally
has been forked from. The maintainers of that project then may merge the pull
request into the original project.

UPSTREAM LOCAL

GITHUB
fork

pull request
ORIGIN

clone

push

Figure 2.2: Social coding work�ow

13

Version control development models

Hammant (2013) describes a development model called Trunk based development
as shown in �gure 2.3. This model is based on one central branch called the trunk.
While any developer may use other branches within their local development
infrastructure, on the server side all development is made on the trunk.

Once the state of the software is ready for a release, then a branch is created
from the trunk and called after the release number. Bug �xes are made on the
trunk and then merged into the release branches. Usually developers do not
have write permissions to them, only the release engineer does. So this is a quite
constrained and hierarchical development model.

commit
bra

nch
v1.0.0

TRUNK commit commit commit commit commit commit commit
bra

nch
v1.0.1 v1.0.2 v1.1.0 v1.1.1

merg
e

merg
e

merg
e

Figure 2.3: Trunk based development

Driessen (2010) describes another development model called Git Branching
(see �gure 2.4), as it is adopted and applied by the Diaspora community (Tilley,
2012a). As one of the main enhancements of Git compared to older version con-
trol systems is the ease of branching. Making use of branches is a core part of
the development work �ow. Within the model there are a number of default
branches, that every project should consist of:
master is the current state of the project. Releases are tagged on it. No active

development is done on that branch.
develop should be the branch for daily work. New branches are created from

here and any nightly builds would be taken from it. This branch is where
external developers should issue their pull requests against.

feature branches are created, once a new feature is added to the software. This
is shown by naming the branch after the new feature. Once the feature is
completed, the branch is merged back into the development branch.

release branches are created from the development branch right before a pro-
duction release. Last minor bug �xes can be made as well as version num-
bering adjusted inside the code. It is then merged into master, where it is
tagged as the current version number. Finally it is also merged with the
develop branch to include any minor �xes into future releases as well.

hot�x �nally comes into account, if there is a severe bug in a production release,
that needs to be �xed immediately. The branch will be created from the
master branch. Besides that it does not di�er from a release branch, as it
will be merged back into the master and the develop branch.

14

MASTER v0.0.1

HOTFIXES

RELEASE

DEVELOP

hot�x

branch

commit

merge

bug�x bug�x

FEATURE commit

release

branch

commit

merge

commit

v0.0.2 v0.1.0 v0.2.0

release

Figure 2.4: Branching model

Test driven development

As Beck (2003) �rst describes, test-driven development (TDD) is a key method to
improve overall code quality of any software project.

Within many software development environments there are testing frame-
works available, that run certain test cases created by the developer on the actual
software code, like RSpec for Ruby or Jasmine for JavaScript projects. Running
tests is a standard procedure in any software build operation.

Following TDD means to actually write a test case, before even implement-
ing the code for the software itself. The idea is to use the test case to describe,
what the software code is expected to do. The test case fails, as long as the code
does not ful�ll the desired functionality. Once the code passes the test, it can be
refactored to improve overall code quality, while keeping the test passing. Fi-
nally the feature will be deployed, and before the next feature is implemented,
another test needs to be written therefore (see �gure 2.5).

Within the Diaspora community, TDD is applied within the development pro-
cess and any contributor is encouraged to utilize it (Tilley, 2012b).

WRITE TEST

start next

DEPLOY FEATURE

test fails

keep test passing REFACTOR CODE

test passes

WRITE CODE

Figure 2.5: Test driven development

15

16

Chapter 3

Diaspora DSN Analysis

Diaspora is a distributed social network (DSN) that consists of multiple indepen-
dent instances. The DSN is not owned by a particular person, enterprise or any
other corporation, because each instance is run by individuals. This keeps the
network from being subject to advertising, data mining and commercial take-
overs. The software which the instances forming the network are run with, is
based on a free and open source software that is called Diaspora as well.

The term Diaspora refers to a historical expression for movements of people
away from their home country. Being of Greek origin, the term is well-known
from the expulsion of Jews from Judea, Greeks �eeing away from Constantinople
and other historical occasions.

The dispersion away from a bad origin has been adopted as a metaphor for
the movement from centralized services to a DSN. Started as a private approach
by Zhitomirskiy et al. (2011) it later became a free and open source software com-
munity project (Zhitomirskiy et al., 2012). The goal of the project is to address
privacy concerns of users by design.

3.1 Comparison to other DSN software

There is a wide range of DSNs being in active development. A broad comparison
list is available on Wikipedia (2015). As most of them share major characteristics,
as being actively developed, using free and open source software development
kits, released under free software licenses as the AGPLv3 license and their matu-
rity is in stable state, the choice for Diaspora as reference software for this thesis
has been made by the number of active users in the particular network.

Table 3.1 on page 18 shows a comparison of active users on three of the cur-
rent major DSNs. Since Diaspora is by far the most actively used DSN, it is uti-
lized to demonstrate the goals of this thesis.

17

Diaspora Gnu Social Friendica
666.617 24.500 8.575

(The Federation, 2015) (GSTools, 2015) (Friendica Directory, 2015)

Table 3.1: Active users in 2015 on current major DSNs

3.2 Architecture overview

Unlike centralized services, where there is only one logical server, the Diaspora
DSN consists of an unlimited number of single instances. An instance of Dias-
pora is called a pod, which is assumed to be derived from the biological term for
a group of aquatic mammals (Wordnik, 2015).

Any user of the network belongs to a certain pod. As �gure 3.1 shows, the
user account is represented by its unique identi�er formed as user@domain,
where the user corresponds to the login name on the pod and the domain to
the domain of the server, the pod is hosted on. This unique identi�er is called
the Diaspora handle.

IN
VITA

TI
ON

hisownpod.social

The Internet

pod1.de
anotherpod.org

alice@ bob@ carol@

dave@

Figure 3.1: The Diaspora DSN

The pods interact with each other via the Internet. This is done by a back-
ground service, so that it does not interfere with the front end. When a user
submits a post, it is �rst stored on the local pod and later transfered to other
pods asynchronously (see section 3.3).

The friendship concept is asymmetric in Diaspora. Unlike in a symmetric
friendship, where both parties see any content of each other instantly, if Alice
starts sharing with Bob on Diaspora, she has decided to send posts to Bob, rather
than receiving his content. Bob in turn gets noti�ed of this and now receives her
posts. He may now choose to also share with Alice, but he is not required to do
so. If he does not, Alice will only see Bobs content, that he has marked as public.

18

3.3 Federation

The fundamental aspect of DSNs is the act of sharing data between di�erent
pods. Within Diaspora (and some other DSNs as well) this is called federation.
The technology behind this feature consists of a number of open protocols, that
are explained in this section.

Once a new Diaspora pod is set up, it has no knowledge of any other users
or pods, so the user will not see any content outside of his own pod. Also, there
is no central server that has this knowledge.

"alice@pod1.de"

Local pod knows about this user? SUCCESS!

return details
search

no

yes

1. Access host-meta route on unknown user’s remote pod
get XML containing that pod’s user search route

2. Access remote pod’s user search route
get XML containing hcard pro�le link

3. Access the person’s hcard pro�le link
get HTML containing public pro�le information

sa
ve

pe
rs

on
in

lo
ca

ld
at

ab
as

e

Figure 3.2: WebFinger user discovery

When a user adds a contact from a remote pod, the pods establish a connec-
tion to that remote pod. The user discovery is shown in �gure 3.2. It starts by
searching for the unique identi�er called Diaspora handle.

If not already in the local database, the pod �rst starts to �gure out where
information of the remote user can be found. Diaspora uses the standard protocol
WebFinger (Norris, 2014) therefore. Using WebFinger, the remote pod is assumed
to provide information about how to ask for users at the well-known URL:

h t t p : / / remotepod . example / . we l l−known / host−meta

19

It returns XML-formed information about the search template, which should be
the actual WebFinger URL:

h t t p s : / / remotepod . example / w e b f i n g e r ? q=bob@remotepod . example

Requesting this Uniform Resource Locator (URL) returns XML-formed data about
the user like the pro�le page hCard URL:

h t t p s : / / remotepod . example / hcard / u s e r s / b4a2 1a409 a35b3 68

The hCard of a user (Çelik and Suda, 2013) provides more detailed content formed
in Hypertext Markup Language (HTML), that the local pod can display to the user
(see �gure 3.5). The local pod stores all the information retrieved by the remote
pod in its own local database. Now the local pod has knowledge of this remote
pod and the remote pod in turn knows about the local pod as well.

The Diaspora software uses the Salmon protocol (Engestrom, 2013) to send
content from one pod to another. It is a standard protocol for comments and
annotations to swim upstream to update original sources.

Figure 3.3 shows a sequence diagram of the Salmon Real Time Commenting
Flow. First, a new entry is posted on the source, published to subscribers via
PubSubHubbub (Fitzpatrick et al., 2014), and re-published by an aggregator. Next,
a new comment called relayable (Tilley, 2012c) is posted on the aggregator. It is
pushed back upstream to the source using Salmon. Finally, the source pushes the
relayable comment to all subscribers.

SOURCE AGGREGATOR

PubSubHubbub re-publish

Salmonpublish in thread

PubSubHubbub

new entry

new comment

new comment

re-publish

Figure 3.3: The Salmon Real Time Commenting Flow

Sending a message is divided into three tasks: construct the message called
slap, construct the URL for the remote salmon endpoint, and actually posting the
message. Messages in Diaspora are sent encrypted using the public RSA key of
the remote user, that is announced through WebFinger. Diaspora extends the
structure of the payload by meta data about how to handle the encryption. The
constructed slap holds base64 (IETF, 2006) double-encoded data with data-type
and encoding parameters besides the payload. It is signed with the private RSA
key of the local user before being ready for delivery.

20

The URL of the remote endpoint is constructed using the pod URL trailed by
the /receive/users/ route and the user’s guid, which is a globally unique iden-
ti�er of the user account (see section 5.6). Sending the message is done by a POST
request to that URL. It requires the data to be assigned as application/x-www-
form-urlencoded MIME-Type and di�ers from the original Salmon protocol by
adding xml=((double urlencoded salmon slap)) to it.

Receiving a salmon slap is basically identical to sending in reverse order.
Since nothing about the author is sent in clear text within the slap, �rst the
payload must be decrypted to �nd out who the message is from. The payload
contains the Diaspora handle of the sender, which is needed to get the public
key through the WebFinger protocol to verify the signed message.

Before persisting the received content in the database, the receiving pod also
veri�es, that the Diaspora handle of the sender of the content is identical to
the Diaspora handle of the content’s author. This implies that every entity that
should be federated must have a user account associated with it as its author.

3.4 Applied software components
The core components of the Diaspora software (Haß, 2013):
Application framework The application framework used by Diaspora is Ruby

on Rails. It is designed as a Model-View-Controller (MVC) design pattern
and communicates through a routing mechanism following the REpresen-
tational State Transfer (REST) paradigm. It features the usual environment
modes production, development and test.

Database MySQL or PostgreSQL are available as database servers to store per-
sistent data like users, posts, comments etc.

Webserver Unicorn, the HTTP server for Ruby on Rails environments, gener-
ates the dynamic content.

Template engine To render HTML for the user interface, the templating engine
Haml is used. Its core advantage to embedded Ruby is to avoid mixing up
HTML and Ruby code inline.

Client Application Framework In the browser the JavaScript framework Back-
bone.js is responsible for structured data handling. It is also based on the
MVC paradigm and provides a RESTful Application Programming Inter-
face (API) in JavaScript Object Notation (JSON).

Background processing Tasks that need more time for computation are done
by the background processing system Sidekiq. This includes communica-
tion to other Diaspora pods or fetching remote pro�les.

Process communication To handle communication between Unicorn and
Sidekiq, the key-value store in-memory database Redis is integrated.

21

3.5 User Interface
The Diaspora user interface is very similar to other social network services.

Figure 3.4 shows the main view called the Stream. It holds status updates,
reshares and other postings by people who share with the account of the current
user. Each entry has handles to like, reshare and comment on it. On top there is
a submission form for the current user to post new content.

There are two sidebars on the left and on the right. The left sidebar holds
the main menu, where the content of the stream can be modi�ed. Di�erent user
aspects can be selected or deselected to �lter the corresponding postings. The
right sidebar holds helpful support links, information about friendship connec-
tions and other meta-content, that is not directly related to the stream elements.

There are other views for a single post, search results (�gure 3.5), messaging,
noti�cations and settings. The interface features HTML5 elements and is respon-
sive for small- and large-scale screen resolutions. There is also a separate mobile
view, that only applies on handheld devices. It features less functionality, but
acts as foundation for an Android application called Diaspora Native WebApp.

3.6 Development status
The Diaspora DSN software is currently in active development. Following the
Git Branching model (see section 2.4), releases are separated into distinctions in
the form major.minor.hotfix, as described by Preston-Werner (2013). There is
a �xed schedule for minor releases scheduled to every six weeks. A minor release
will contain �xes, features and changes that can be applied to a pod running in
production mode without following a migration guide or a downtime for more
than a few minutes (Faldrian, 2015). As of December 9, 2015, version 0.5.4 is the
latest stable release.

The Diaspora development, code release, issue tracking and pull request han-
dling is done on Github at https://github.com/diaspora. Further informa-
tion for installation, development and other knowledge is held in a separate
Wiki at https://wiki.diasporafoundation.org. Project management, dis-
cussions and decision making is undertaken on a social discussion platform called
Loomio (2015), short discussions and minor consultations mostly on Internet Re-
lay Chat (IRC) in the Freenode network, channel #diaspora-dev.

22

https://github.com/diaspora
https://wiki.diasporafoundation.org

Figure 3.4: Diaspora Stream

Figure 3.5: Diaspora Search Results

23

24

Chapter 4

Concept

The goal of this thesis is to show the ability of a software to be extendable by
abstracting models and evolving them to other functionality. The DSN software
Diaspora (see chapter 3) will be used to demonstrate the proposal.

According to the task de�nition, an overall concept for federated events is in-
troduced in this chapter. This includes di�erent approaches to construct an event
model and its properties, relations between users and events and the administra-
tion aspect. Further, challenges concerning Federation are discussed, and the
feature set of the application module is speci�ed. Concluding the concept some
mockups for the user interface in the browser are introduced.

4.1 Model development strategy

A number of di�erent approaches to add events to the feature list of Diaspora
are to be concerned.

As a �rst option, an event could be handled as an extension of a regular post
(see �gure 4.1a). This would be easy to implement, as it would not be much
di�erent than the existing poll function, that Diaspora already features. As a
downside, this approach would closely connect an event to an individual user.

Another approach would mirror the post model and extend it with event-
like features (see �gure 4.1b). This would be closely related to the post model,
but feature certain important di�erences. As the most important one, this way
an event can be connected to multiple users. As personal experiences from other
event portals show, it is a very important feature to have multiple users be able to
administrate an event. This top-down strategy is most likely to produce ready-
to-play results, but requires deep knowledge of the software characteristics.

A third strategy introduces an event as an individual model and a bottom-
up development technique (see �gure 4.1c). In this case, a clean model with

25

only a basic feature set would be implemented and slowly evolve and equip with
features that integrate into the Diaspora environment. This strategy is focused
on stable features and interoperability with software other than Diaspora as well.
This follows requirements according to the task de�nition and therefore it is the
favored strategy for this thesis.

POST

EVENT

(a) Extend a post

POST EVENT

(b) Copy post model

EVENT

(c) Evolve event model

Figure 4.1: Backend model development strategies

4.2 Properties
To ensure a familiar user experience with social events, it is reasonable to consult
other social network services like Facebook (see �gure 4.2) for certain properties,
a social event might have, and adopt them in the concept for Diaspora events.

Figure 4.2: Facebook event form revealing properties of a social event

• name string, that holds a short and clear name to act as a title for the event
• datetime start and an optional datetime end object
• location name string, that holds a place or address to point to
• description text, that holds any particular event information

26

Additionally and also a common property of an event on social network ser-
vices is an image for event posters or other extending graphics. A Diaspora event
should include the option to add an image to it, which can be visualized next to
the essential event data within the stream or an individual view.

The description in Diaspora events may act as a regular text �eld of a status
message. This includes that it can hold tags, so that events can be categorized
with the Diaspora built-in taxonomy.

Diaspora already features locations, that may be attached to posts. If so,
the web application gets the current location from the HTML5 Geolocation API
(Popescu, 2014) and utilizes the search engine of Open Street Map (Twain, 2015)
to match a name, which will then automatically be attached to the post. For
events, the location search function can be convenient for known locations, but
should not be automatically attached to events. Instead, the user may search for
known location names and choose between search results or enter one manually,
if no su�cient location was found.

4.3 Administration

As stated above, the administration of an event should be possible for multiple
users. Granting write permissions to an event to remote users is a challenging
e�ort with respect to federation (see section 4.5).

There are a number of di�erent approaches to implement that functionality.
A very lightweight possibility is to keep the administration feature for events
open just to users on the same pod. This would purge the complexity of remote
administration, but also fully contradicts the federation concept, so it is not re-
garded as a serious option.

Another approach would keep a list of authorized users on the pod of the
creator. When a remote person tries to edit an event, that list is being called to
verify the authorization of the remote person to edit an event. That would imply
this pod to always be available for any other pod. This contradicts the concept of
individual instances in a DSN, so it should not be the basis of the concept either.

Instead, the concept makes use the fact that publishing an event basically
copies the event object to the database of the remote user’s pod. The list of editors
will be a relation of a person to the event and thus, a relayable. The remote pod
itself implements write permission to the user to edit the event locally.

Because any federated entity must have its own author in Diaspora federa-
tion, the remote edited event is not sent back to the original pod itself, but instead
an EventUpdate is created, whose author is the editing user. This update is sent
back to the original pod, where the original event is updated using the update’s
properties (see section 4.5).

27

4.4 Relations to an event

De�ning relations between an event and any corresponding user is a challenge
within this thesis. Two di�erent approaches have been attempted and evaluated.

As a user creates an event, he should automatically be its owner. Thus a �rst
approach de�ned, that owning an event forms a relation to it. Another relation
is the claim to attend to an event. When a person invites another person to an
event, this would be a third alternative relation, that must be stored.

1 1
has many

belongs to belongs to

has many
EVENT

title:string

PERSON

...
EVENT RELATION

0..* 0..*

attending:boolean
invitor:Person
role:enum

...

Figure 4.3: First attempt event concept class diagram

belongs tobelongs to

EVENT PERSON

1

1

has many

has manytitle:string
author:Person ...

EVENT ATTENDANCE

0..*

attendee:Person
event:Event

EVENT INVITATION

0..* 0..*

invitee:Person
invitor:Person
event:Event

EVENT EDITOR

0..*

editor:Person
event:Event

...

10..*
has manybelongs to

belongs to

Figure 4.4: Class diagram of the relations to an event

28

Figure 4.3 shows a class diagram of an event with its direct properties (see
section 4.2) and one entity with its properties de�ning the relations of a person
to an event. That acts as relayable to the event entity and holds its attendances,
invitations, and also a relation to a person who is either owner of or otherwise
allowed to edit the event (see section 4.3). The latter would be stored as an enu-
merable featuring three di�erent states owner, editor, and guest.

This approach had to be reverted for multiple reasons. As the Diaspora Fed-
eration implementation assumes any entity that should be federated to have its
author as a direct property of it (see section 3.3), storing such a relation in another
entity would be redundant.

The obligatory author also a�ects the other properties of the relation entity.
When Alice invites Bob to an event, Alice is the author of the created relation to
the event. When Bob accepts the invitation and attempts to store his attendance
to the event, he must edit the relation entity with his attendance, but this updated
relation can not be federated, because the sender of the entity, Bob, is not its
author, which is Alice.

The consequence of these �ndings is, that the full stack of relation informa-
tion to an event can not be stored within one entity.

Realizing the complexity of this case, the concept had to be refactored with
respect to these obstacles. The second approach introduces a setup, that consists
of one event entity, as well as multiple relayables for attendances, invitations and
editors of the event, each storing their person-event relation individually.

Figure 4.4 shows the class diagram for the refactored concept. It indicates
the direct relation between an event and a person through the event’s author
attribute. The relations to the event are represented by individual entities, each
being connected to the event through the event attribute. Further attributes are
described in detail, as follows:
attendance The attendee is inherited from the event’s author, so it does not

have an individual relation to a person itself
invitation A relation between to persons and an event. In analogy to the at-

tendance relation, the invitee is inherited from the event’s author, but the
invitor as a di�erent person is referenced directly.

editor A mixture of both the two �rst relations, as there is only a direct relation
between a person, the editor, and an event through this entity

On other social networks, there are more options to create a relation to an
event, like the ability to not attend. As opposed to this, there will not be such an
option within this concept. Personal experiences show, that a su�ciently high
amount of users tend to just ignore an event, if they are not going to attend.
In October 2015 even Facebook adopted this with a relation called interest as a
replacement for the old behavior (see �gure 4.5 on page 30).

29

Figure 4.5: Facebook attendance

4.5 Federation
Federating an event is done with PubSubHubbub functionality of the Salmon pro-
tocol (see section 3.3). The relations to an event make use of the relayability con-
cept, that is also part of the Salmon protocol. It is also used for comments and
likes in Diaspora.

A remote user creates an attendance entity to an event, so his pod sends a
relayable to the pod of the original event, which in turn will determine according
to the list of related pods, what other remote pods will need to see the attendance,
and relay the attendance to those pods (see �gure 4.6).

alice@pod1.de bob@anotherpod.org

dave@hisownpod.social

EVENT
bob attending

PubSubHubbub

Salmon Relayable

Salmon Relayable

PubSubHubbub

EVENT
bob attending
+ EVENT

+ attending

Figure 4.6: Event relation relayabilty

This procedure is insu�cient when it comes to editing an event (see sec-
tion 4.3). As already stated in section 4.4, any federated entity must have a dedi-
cated author. When another person edits any entity and tries to federate it to its
original pod, the veri�cation of the author fails, because it is not congruent with
the sender in that moment. So there must be an alternative approach with event
updates.

Figure 4.7 shows, how this is achieved: another entity called an EventUpdate
is introduced, that is created upon editing an existing event. It will hold the same

30

properties as an event itself, but will not be persisted in the database. Instead, it
is only used to send it to other pods.

As the author of the update is certainly the remote editor, the receiving pod
can verify it as the sender. In advance, it uses the properties to update the original
event in the local database, and then just discards the received event update.

alice@pod1.de bob@anotherpod.org

FederationEVENT

title: My Event

edit

create

author: alice

EVENT

title: My Event
author: alice

EVENT UPDATE

title: New Name
author: bob

Federation

update

EVENT

title: New Name
author: alice

saveEVENT

title: New Name
author: alice

save

discard

EVENT UPDATE

title: New Name
author: bob

discard

Figure 4.7: Event update federation

4.6 Feature set
This section describes the feature set, that the event feature should incorporate.
According to the task de�nition, this should not relate too closely to the Diaspora
software, in order to be deployed on other DSNs systems as well.

The features will be introduced separately in the following, while not elabo-
rating on technical details. See chapter 5 for technical implementation speci�cs.

Get all events

This feature should return all events stored in the local database of a pod. Only
direct properties of each event should be returned. This is useful for the con-

31

struction of a calendar view. Assuming that all events are public, there is no
further distinction regarding privacy aspects as a part of this concept. Further,
this call should not require a valid user login, so that also guests may be able to
use it.

Get one event

As opposed to all events, calling one event should return all known details of
an event, including any attendance as well as any invitation to an event. This is
useful for a single event view, which includes the presentation of all invited and
attending people. This call should not require user authentication either.

Create an event

When it comes to creating a new event, a valid user account is obligatory, as an
event requires an author as a direct property (see section 4.4). So a call to this
feature must include authentication. It must provide all information about direct
properties stated in section 4.2 as well. Any information must be provided within
one call to the application.

Attend to an event

A user who is to claim his attendance for an event must of course provide the
event to attend to. Further, user authentication to the application must be pro-
vided, so the application can associate a user account to the created attendance
relation to the event.

Unattend from an event

This feature is considered the reverse function of the previous. A user has to
provide an event as well as authentication to be able to remove the corresponding
attendance relation from the event.

Invite a person to an event

When a user wants to invite another person to an event, some kind of identi-
�cation for the invitee must be provided besides the event. Obviously, user au-
thentication is required for the application to be able to create a relation between
the invitor, the invitee and the event. There is no such feature as un-inviting a
person from an event, as it is assumed that the person itself will remember the
existence of an event in any case.

32

Enable a person to edit an event

Allowing other people to edit an event should only be allowed to the owner of
the event, so authentication is mandatory. Further, the event as well as a person
to be nominated as editor of the event have to be provided.

Disable a person to edit an event

This again is the reverse function to the previous. It should also only be allowed
to the owner of an event, and therefore requires user authentication. As an editor
of an event is a distinct relation to an event, which needs to be removed from the
database, only the ID of that relation is required.

Edit event properties

Updating an event can basically include all information, that is needed to create
an event. It is not required to provide all information with every edit call, though.
Only those properties that are updated, su�ce the call. User authentication is
mandatory, to ensure that only authorized users may edit an event.

4.7 Alternative approach using iCalendar
A very di�erent approach would be to delegate the task of dealing with events
to a calendar server, that serves events in a standard format like iCalendar (IETF,
2009). Such a calendar server would take control over the storage of any event,
access control and concurrency issues. There are two options to approach this.

One would be to have a separate implementation like Davical (McMillan,
2014), Baïkal (Schneider, 2014) or even ownCloud (Karlitschek et al., 2015), where
the Diaspora application itself acts as a client to store and load the actual events
from. This would in turn mean to have a dependency for the Diaspora applica-
tion outside of Ruby on Rails, which is very inconvenient for a straight-forward
installation process (see appendix A.2) and will therefore approximately never
be integrated in a stable release.

Another approach would require to implement a calendar server application
into Diaspora itself. This in turn would mean to advance the software with an
enormous feature set, that is actually not absolutely required for the purpose of
being a DSN software set.

Both of those options would imply lots of functionality, that the general Di-
aspora software would barely make use of. As already stated in section 4.3, the
administration logic can be achieved by extending already built-in functionality.
The KISS-Principle (Hanik, 2007) applies here.

33

4.8 User Interface
While most of the thesis deals with so-called backend functionality, the concept
work to extend Diaspora with social event functionality can also bene�t from a
draft for an interface design for the frontend user. The Diaspora user interface
can be considered a more or less distinct application from the server implemen-
tation of ruby on rails, as it is implemented as a Backbone.js featured JavaScript
browser application (see section 3.4). Communication between this frontend ap-
plication and the backend will be realized with a RESTful API (see section 6.1).

Developing event functionality within this application will be out of scope
of this thesis and therefore any implementation will not be realized. To get an
idea of a possible user experience of Diaspora events, this section brie�y shows
a design concept of a user interface for the event feature within Diaspora.

In the stream view the sidebar will hold another section called My Events in
it as shown in �gure 4.9. There will be a small monthly calendar table view with
days highlighted, on which there are events the user has stated to attend. Below
there is a button Create new event. Being a section inside the sidebar, it follows
the responsive grid system of the Bootstrap framework, so on a small screen it
will be below the stream.

A shared event will appear in the stream between any other content (see
�gure 4.9). The template therefore must be slightly altered as compared to a
regular post, as the essential data name, date, location and image should be placed
more outstanding than any regular content.

The single view for an event is shown in �gure 4.10. It is held closely to the
single post view. On the left side of the screen the essential data for the event
is shown. To the right, there will be a list of users who announced to attend to
that event and those who are invited by others. Below there are comments to the
event.

There are a couple of new icons to be introduced (see �gure 4.8). They have
been taken from the Entypo Font Icon Library (2015) which are used in Diaspora
already.

(a) event (b) invite (c) attend

Figure 4.8: New event icons. Source: Entypo Font Icon Library (2015)

34

Figure 4.9: Mockup for the stream view including the side bar section

Figure 4.10: Mockup for the single view

35

36

Chapter 5

Implementation

This chapter discusses the key aspects of the implementation process. Major con-
cerns about integrating events into the MVC environment as well as key concepts
of database migration are explained. The aspect of con�guring routes in Ruby
on Rails is touched and some examples regarding TDD are presented.

5.1 MVC Integration
The implementation of the concept discussed in chapter 4 should fully integrate
into the Diaspora application framework Ruby on Rails. As this is designed fol-
lowing the MVC design pattern, so will the event feature have to be.

Substantial component of any entity within an MVC application resides within
the model. It manages the data, logic and rules, describes the domain and behav-
ior of it as well as the connection to other entities. The controller component is
responsible for dealing with user input and manages the output respectively.

The work of this thesis does not include the integration in the Backbone.js
featured JavaScript frontend application, so there will be no discussion about
the view component of the MVC pattern. Instead, there will be a RESTful API
provided (see section 6.1), that is invoked in the controller.

As an example for the performance of the MVC paradigm, the according el-
ements of the event entity are described in the following paragraphs.

The Event model is the center of the implementation. In listing 5.1 is shown,
how it describes the connections to other models using the very readable English-
language-like Ruby on Rails syntax. The model also holds a method receive, that
is invoked on the receiving side of a federation process. As federation only sends
information to other pods, the receiving pod is still responsible to persist the
information in the local database. This is what self.save does.

37

c l a s s Event < A c t i v e R e c o r d : : Base

b e l o n g s _ t o : author , : c l a s s_name => ’ Person ’
has_many : e v e n t _ a t t e n d a n c e s
has_many : e v e n t _ i n v i t a t i o n s
has_many : e v e n t _ e d i t o r s

def r e c e i v e (user , person)
s e l f . s ave

end

end

Listing 5.1: Event Model

Listing 5.2 shows the EventsController. As a remarkable detail, Ruby on Rails
conventions name controllers using a plural notation, while the model is named
using singular notation. The events controller holds methods that correspond to
the di�erent calls to the application following the REST paradigm, that Ruby on
Rails is founded on.

In particular, the index method returns all events known to the local applica-
tion. show returns just one event and therefore needs the parameter params[:id]
as an identi�er. The create method shows, how a new event is created using the
given parameters and setting the current user as the author of the event. In ad-
vance, it is sent to the federation mechanism using the Postzord::Dispatcher
module. In the update method an event is looked up in the database using the
passed identi�er, edited and saved. Next, a new instance of an EventUpdate is cre-
ated, using the same properties as the original event has, plus the globally unique
identi�er (GUID) of the event (see section 5.6), which is in turn sent to the fed-
eration mechanism using the Postzord::Dispatcher module. The event’s de-
stroy method uses the retract method of the current_user class, which takes
care of the local removal of the event and any corresponding relations as atten-
dances, invitations and editors, as well as notifying remote pods of the removal
using the federation mechanism.
c l a s s E v e n t s C o n t r o l l e r < A p p l i c a t i o n C o n t r o l l e r

b e f o r e _ a c t i o n : a u t h e n t i c a t e _ u s e r ! , : on ly => [: c r e a t e , : update]

def i ndex
r e n d e r : j s o n => Event . a l l

end

def show
r e n d e r : j s o n => Event . f i n d (params [: i d]) . t o _ j s o n (

: i n c l u d e => [: e v e n t _ a t t e n d a n c e s , : e v e n t _ i n v i t a t i o n s]
)

end

38

def c r e a t e
eve n t = Event . c r e a t e (

a u t h o r : c u r r e n t _ u s e r . person , t i t l e : params [: t i t l e]
)
P o s t z o r d : : D i s p a t c h e r . d e f e r _ b u i l d _ a n d _ p o s t (c u r r e n t _ u s e r , e ven t)
r e n d e r : j s o n => even t

end

def update
eve n t = Event . f i n d (params [: i d])
eve n t . t i t l e = params [: t i t l e] | | ev en t . t i t l e
eve n t . save
e v e n t _ u p d a t e = EventUpdate . new (

eve n t : eve n t . guid , t i t l e : params [: t i t l e]
)
P o s t z o r d : : D i s p a t c h e r . b u i l d (c u r r e n t _ u s e r , e v e n t _ u p d a t e) . p o s t
r e n d e r : j s o n => even t

end

def d e s t r o y
i f Event . f i n d (params [: i d])

c u r r e n t _ u s e r . r e t r a c t (eve n t)
end

end

end

Listing 5.2: Events Controller

Table 5.1 shows models, controllers and the methods, each entity provides for
the RESTful API. The related entities do not feature any index or show meth-
ods, as that information is provided when a single event is shown. As a notable
di�erence of the EventUpdate to the others, this entity only consists of a model.
This is not necessary, as it will never be called using REST, but merely through
the EventsController (see listing 5.2).

Model Controller Methods

Event EventsController index, show, create,
update, destroy

EventAttendance EventAttendancesController create, destroy
EventInvitation EventInvitationsController create
EventEditor EventEditorsController create, destroy
EventUpdate - -

Table 5.1: Models, controllers and methods of the event feature

39

5.2 Database migration
Besides the integration into the MVC environment, the database must be ex-
tended as well. The development environment has utilized the MariaDB rela-
tional database management system (Widenius, 2015). Ruby

Ruby on Rails ships with a command line interface to alter the database en-
vironment. Using the rake command, the database migration is called on a �le,
that is also created automatically and can be altered afterwards.
rake db : m i g r a t e db / m i g r a t e / 2 0 1 5 0 9 1 7 1 4 1 2 3 1 _ c r e a t e _ e v e n t s . rb

The datetime string at the beginning of the �le name is used to sort multiple
migration �les by date. Migrations may depend on other migrations, that have
been created at an earlier point of time.

A valid migration to create entries for Diaspora events is shown in listing 5.3.
For every entity a separate table is created. The columns of each table are created
within each creation block.

Each column entry can be enhanced with some constraints that are passed
to the database automatically by Ruby on Rails. t.belongs_to :author tells
the database that the corresponding column will be of type int, as it will hold
the identi�er of another entity from the database, which it belongs to. Therefore,
Ruby on Rails automatically adds _id to the name of the column, so that the name
of the column in this example is author_id. During runtime, it automatically
detects this column, when referencing attributes called author within the code
(see section 5.6 for special characteristics of the identi�er). Further constraints
may be attached to the column creation, for example :null => false, if the
database entry must exist.

As it is required to search for relations between events and their correspond-
ing entities, it is suitable to create a database index for those relations. As an
example, when removing an attendance, the following code is called:
EventAt tendance . f i n d _ b y _ i d _ a n d _ a t t e n d e e _ i d (

params [: i d] , c u r r e n t _ u s e r . person . i d)

To avoid time-consuming database operations, indices for relations like those
are created, so that the application can process the request in a reasonable amount
of time.

The up method describes the creation of the database structure. The Ruby on
Rails interface also supports a reverse operation, that uses the down method and
is called using rollback instead:
rake db : r o l l b a c k db / m i g r a t e / 2 0 1 5 0 9 1 7 1 4 1 2 3 1 _ c r e a t e _ e v e n t s . rb

40

c l a s s C r e a t e E v e n t s < A c t i v e R e c o r d : : M i g r a t i o n

def up
c r e a t e _ t a b l e : e v e n t s do | t |

t . b e l o n g s _ t o : author , : n u l l => f a l s e
t . s t r i n g : t i t l e , : n u l l => f a l s e
t . s t r i n g : gu id
t . t imes tamps n u l l : f a l s e

end
c r e a t e _ t a b l e : e v e n t _ a t t e n d a n c e s do | t |

t . b e l o n g s _ t o : a t t e n d e e , : n u l l => f a l s e
t . b e l o n g s _ t o : event , : n u l l => f a l s e
t . s t r i n g : gu id
t . t imes tamps n u l l : f a l s e

end
add_ index : e v e n t _ a t t e n d a n c e s ,

[: a t t e n d e e _ i d , : e v e n t _ i d] , unique : true
end

def down
d r o p _ t a b l e : e v e n t s
d r o p _ t a b l e : e v e n t _ a t t e n d a n c e s

end

end

Listing 5.3: Database migration �le

5.3 Routing
The interface to a Ruby on Rails application like Diaspora is usually a URL. To
create interfaces to the di�erent entities within an application, Ruby on Rails pro-
vides a routing mechanism, that form the PATH part of a URL. For basic entities
that follow the REST paradigm, creating a route to the entity requires only one
command to a �le called config/routes.rb within the application. The event
related entities are created as shown in listing 5.4. These entries create routes as
described in section 6.1.
Di as po ra : : A p p l i c a t i o n . r o u t e s . draw do

r e s o u r c e s : e v e n t s
r e s o u r c e s : e v e n t _ a t t e n d a n c e s
r e s o u r c e s : e v e n t _ i n v i t a t i o n s
r e s o u r c e s : e v e n t _ e d i t o r s

end

Listing 5.4: Database migration �le

41

5.4 Branching

As discussed in section 2.4, development on version control systems in the Di-
aspora project utilizes Git branching. The implementation part of this work tied
on to this strategy and established a similar Git branching tree.

As shown in �gure 5.1, the main branch was branched o� of the upstream
branch develop. Being a feature branch, the newly created branch events was de-
�ned to be the master branch of this thesis work. Further branching and merging
was to be sourced from this branch.

The �rst implementation, represented by the two branches create and federate
was to be truncated, as discussed in section 4.4. The resulting code has not been
discarded though, but merged back into events for future documentation.

By the time of the refactoring, another version update had been released (see
section 3.6), so the event feature branch was updated to the latest version as well.
After the update pull from the upstream development branch and the creation of
another sub-feature branch more-relations, any single relation feature has been
created on their own branches.

After completing a relation feature, the code has been merged back to more-
relations, and �nally back to the main project branch events.

The code for the event feature has not been merged into the upstream repos-
itory by December 9, 2015.

events

federate

create more-relations

attendances

invitations

editors

develop

Figure 5.1: Git branching tree of this work

42

5.5 Testing

As described in section 2.4, testing code is a key method to improve overall code
quality of any software project. Diaspora does not use the Ruby on Rails testing
feature. Instead, it uses the more sophisticated testing suite RSpec (Chelimsky
et al., 2014). Listing 5.5 shows the RSpec code for a test on the creation of an
event. It tests for a newly created event object to pass the validation credentials,
set in the event model, which is accomplished by the method call .to be_valid.
d e s c r i b e Event , : type => : model do

b e f o r e do
@event = Event . new (t i t l e : "My ␣ Event " , a u t h o r : a l i c e . person)

end

d e s c r i b e ’ v a l i d a t i o n ’ do

i t ’ shou ld ␣ c r e a t e ␣ an ␣ even t ’ do
e x p e c t (@event) . t o b e _ v a l i d

end

end

end

Listing 5.5: Event creation test

5.6 About GUIDs

In early implementation states the API was to be used not with the presented
local identi�er (ID) parameters but with a globally unique identi�er (GUID) in-
stead.

This GUID is a hexadecimal string with at least eight hexadecimal digits
(Tilley, 2012d), that is given to any entity in Diaspora, that needs to be unique
across all Diaspora pods worldwide. It is used by the Diasporas Federation pro-
tocol (see section 3.3) and thus was to be applied with the events API as well.

While for example for persons this is mandatory for security reasons (i.e. an
attacker can not crawl all users of a pod by just incrementing /people/[id]), all
event data assumed to be publicly available. So there is no necessity to obfuscate
them.

In turn, the Ruby on Rails framework is intended to automatically make use
of calls to the local ID of an entity. This is explained best with the following code
example taken out of the event invitation model. This is just assigning an event

43

object to a variable. Using the GUID requires to explicitly de�ne the attribute to
search for:
eve n t = Event . f i n d _ b y _ g u i d (params [: ev en t])

When just relying on the ID, the explicit call to the attribute may be left out
and Ruby on Rails will automatically know what attribute to look for:
eve n t = Event . f i n d (params [: ev en t])

While this is just a minor improvement, it gets more perspicuous in the next
example. This code declares the associations between the data models of an event
and the event invitation. Using GUIDs would cause to explicitly address the
primary and the foreign key of an event:
b e l o n g s _ t o : event , : pr imary_key => : guid ,

: f o r e i g n _ k e y => : e ven t

Using the ID instead will make the code just as small and readable as this:
b e l o n g s _ t o : eve n t

Ruby on Rails is intended to provide easy readable code, so it is desired to
follow that convention to use IDs where possible.

As any event that is dealt with via the API is known to the local pod and
therefore �led in the local database, it does have a local ID and may be addressed
with it. There is no need to use the globally unique identi�er in the API.

44

Chapter 6

Evaluation

This chapter evaluates the concept and implementation of this thesis. First, the
functionality of the API will be examined, followed by a load test with a large
number of events. Furthermore, the general assembly of the concept is discussed
along with the evaluation of the development environment and overall experi-
ences with developing free and open source software.

6.1 RESTful API performance

While the Ruby on Rails framework provides an integrated module to output
HTML using format.html, the user interface of Diaspora is mainly build by the
Backbone.js client side application framework.

For this framework to be able to get access to the main application, this thesis
work contributes an API to handle events within Diaspora. This API may be
called using standard HTTP request methods, which the REST paradigm is based
on. The input is done via standard POST request messages with POST variables
in the message body carrying the payload. Answers to GET request messages are
formatted as JSON string, that may easily be processed by the client application.

In analogy to the features discussed in section 4.6, the corresponding API
calls are introduced and explained in this section. The command line interface
application httpie by Roztočil (2015) is assumed to demonstrate commands for
each call, that provides a command http to make HTTP calls as shown below.

The listings in this section do not show the entire output. To save room,
elements with marginal relevance have been excluded, as there are the properties
added by Ruby on Rails automatically, created_at and updated_at, as well as
the GUID, which is only important for federation.

As stated, authentication is important for most of the API calls. Diaspora
uses the HTTP state management mechanism called cookies (IETF, 2011). To use

45

cookies in the command line environment, a bash variable $C is created for the
entire HTTP POST variable:
C= " Cookie : \ _ d i a s p o r a \ _ s e s s i o n =bTdJZ1hNbUFpazEJOUh3kz3lQS4dlN3PT0 "

To keep the presented examples descriptive, line breaks in the printed docu-
ment are avoided by creating another variable $S for the scheme, host and port
part of the call in the same way:
S= " h t t p : / / pod . d i a s p o r a . example : 3 0 0 0 "

Get all events

This call uses the GET method on the events route without any other param-
eters. Ruby on Rails defaults this call to access the index method of the events
controller.
h t t p GET " $S " / e v e n t s

The answer to this request returns any known events from the database (see
listing 6.1). The payload is a JSON-formatted array of events, each itself having
their primary properties listed. Besides the author of the event, there are no
further relations to it listed.
[{

" eve n t " : {
" i d " : 1 ,
" a u t h o r _ i d " : 1 ,
" t i t l e " : " A l i c e s ␣ Event "

}
} , {

" eve n t " : {
" i d " : 2 ,
" a u t h o r _ i d " : 2 ,
" t i t l e " : " Bobs ␣ Event "

}
}]

Listing 6.1: Array of events

Get one event

This call includes a parameter, which Ruby on Rails interprets as identi�er and
calls the show method of the events controller.
h t t p GET " $S " / e v e n t s / 1

Listing 6.2 shows the answer to this call. The JSON object again shows the
primary properties of the event, but in addition, it includes related attendances

46

and invitations to that event, each as a subsidiary object with its identi�er and
the related people.
{

" ev en t " : {
" i d " : 1 ,
" a u t h o r _ i d " : 1 ,
" t i t l e " : " A l i c e ␣ Event " ,
" e v e n t _ a t t e n d a n c e s " : [

{
" i d " : 1 ,
" e v e n t _ i d " : 1 ,
" a t t e n d e e _ i d " : 1

}
] ,
" e v e n t _ i n v i t a t i o n s " : [

{
" i d " : 1 ,
" e v e n t _ i d " : 1 ,
" i n v i t e e _ i d " : 2 ,
" i n v i t o r _ i d " : 1

}
]

}
}

Listing 6.2: Event 1 with its relations

Create an event

This call requests the POST method on the events route. Ruby on Rails automat-
ically refers to the create method of the events controller on POST requests, and
passes the parameters. As this call should only be allowed to a registered user,
the method expects a session cookie, which is passed as the bash variable "$C".
h t t p POST " $S " / e v e n t s " $C " t i t l e = " Bobs ␣ Event "

The answer to this call is shown in listing 6.3. It shows the newly created
event as a JSON object with its properties. As this event has just been created,
there are no relations to it yet.
{

" ev en t " : {
" i d " : 2 ,
" a u t h o r _ i d " : 1 ,
" t i t l e " : " Bobs ␣ Event " ,

}
}

Listing 6.3: Newly created event

47

If the call has not passed any session cookie and thus, was not authorized,
an error message as shown in listing 6.4 is returned along with the associated
HTTP status code (IANA, 2015).
HTTP / 1 . 1 401 Un aut ho r i ze d
{

" e r r o r " : " You ␣ need ␣ t o ␣ s i g n ␣ i n ␣ or ␣ s i g n ␣ up ␣ b e f o r e ␣ c o n t i n u i n g . "
}

Listing 6.4: Result of an unauthorized request

Edit event properties

This call uses the PATCH method on the events route, that causes Ruby on Rails
to select the event with identi�er 81 from the database. According to the REST
paradigm, an existing entity is referenced directly within the address. Ruby on
Rails automatically refers to the the update method of the events controller and
passes the parameters along. Any existing parameter will be processed and the
corresponding event data will be updated.
h t t p PATCH " $S " / e v e n t s / 8 1 " $C " t i t l e = " Bobs ␣ new ␣ ev en t ␣ name "

The answer to this call is equivalent to listing 6.3, except of course, it shows
the updated properties.

Attend to an event

This call creates a new entity of an EventAttendance, as it sends a POST request
to the event_attendances route, passing an identi�er in the event variable with
it, to create an attendance relation to the corresponding event entity.
h t t p POST " $S " / e v e n t _ a t t e n d a n c e s " $C " ev en t = " 1 "

The answer is similar to the sub-objects of the call for a single event shown
in listing 6.2, just the event_attendance part with the identi�ers for the event
and the attendee. In case, the event parameter is not passed, an appropriate error
message is returned along with the associated HTTP status code (listing 6.5).
HTTP / 1 . 1 422 U n p r o c e s s a b l e E n t i t y
{

" e r r o r " : " ’ ev en t ’ ␣ r e q u i r e d "
}

Listing 6.5: Newly created event attendance

If the client application has not recognized an already existing attendance
and tries to create it again, the error message shown in listing 6.6 is returned.

48

HTTP / 1 . 1 409 C o n f l i c t
{

" e r r o r " : " a t t e n d a n c e ␣ e x i s t s "
}

Listing 6.6: Newly created event attendance

Unattend from an event

This call deletes the EventAttendance entity with the identi�er 1 in the database,
which is referenced directly within the address. The call passes only the cookie
variable as a further parameter.
h t t p DELETE " $S " / e v e n t _ a t t e n d a n c e s / 1 " $C "

If the call is correctly authenticated and there is an attendance record to
delete, it will be processed and answered with a JSON-formatted success mes-
sage shown in listing 6.7. Otherwise, a 404 Not Found or 401 Unauthorized
status code will be returned.
{

" s u c c e s s " : " a t t e n d a n c e ␣ d e l e t e d "
}

Listing 6.7: Newly created event attendance

Invite someone to an event

This call creates a relation EventInvitation for the person with the identi�er
2 to the event with identi�er 1 in the local database.
h t t p POST " $S " / e v e n t _ i n v i t a t i o n s " $C " ev en t = " 1 " i n v i t e e = " 2 "

As the attendance creation answer, the returned answer to this call is equiv-
alent to the one shown in listing 6.2 as well. Analogous is error handling, as
discussed in the attendance section.

Enable a person to edit an event

This call creates a relation EventEditor for the person with identi�er 2 to the
event with identi�er 1 in the local database.
h t t p POST " $S " / e v e n t _ e d i t o r s " $C " ev en t = " 1 " e d i t o r = " 2 "

Success or error messages replied to this call are compliant with those to
create invitations and attendances.

49

Disable a person to edit an event

This call removes the entity of the relation EventEditor marked with identi�er
1 from the database.
h t t p DELETE " $S " / e v e n t _ e d i t o r s / 1 " $C "

Success and error messages replied to this call are equivalent to the DELETE
call to remove an attendance.

6.2 Performance
Performance of the implementation can be tested in terms of the time consump-
tion of the federation process. Several tests have been executed between three
di�erent pods (see appendix A.1), creating events and di�erent relations to it.
Exemplarily, the creation and federation of one, ten, a hundred and a thousand
events is presented here. It has been created using the time tool within following
shell command:
I = 0 ; time while [$ I − l t 1000] ; do h t t p POST " $S " / e v e n t s " $C "

t i t l e = " C a r o l s ␣ $ I ␣ Event " ; l e t I = I + 1 ; done ;

This command only measures the creation on one pod, so the time di�erences
to the creation on the remote pods have been calculated by comparing the log
output of the Ruby on Rails servers. It turned out, that there was no time di�er-
ence between sending and receiving side. This is resulted in the fact that every
event is sent individually within the loop, so there is only a very small amount
of data to be transfered with every request.

Figure 6.1 shows the results of the experiment. It unveils, that the time con-
sumption graph rises linearly to the created events.

0 200 400 600 800 1000
0,431s
4,678s 41,665s

434,283s

Figure 6.1: Time spent to create and federate 1000 events

However, there are a number of arguments, that lead to the assumption, that
the performance of the implementation does not act deterministic. It was found,

50

that the local server response can take up to 20 seconds, if the system has been
idle for a while before the �rst request. This is likely caused by the experiment
setup. The three pods run as virtual machines on one host, so the time di�erence
for the data transfer between the pods is negligible. In addition, this experi-
ment has been performed running Diaspora in the development environment.
The application behaves di�erently in production mode, where caching features
and other asynchronous operations are taking place. This scenario has not been
tested, as a realistic production setup is out of scope of this thesis.

6.3 Privacy

As the implementation resulting from this thesis is just a proof-of-concept, it has
assumed that any event is public. This can be demonstrated by get-requesting
the /events route of any pod, as described in section 6.1. The answer to this
request holds all data known to this pod.

Being public data, a pod sends events out to all other pods, it has knowledge
of. This also includes, that a pod gets noti�ed of an event, even though nobody
shares with people on that pod. This can be considered a downside regarding
privacy concerns, but it is a consequence of the event being public data.

In future implementations, this implementation should be extended by the
possibility to de�ne certain aspects, an event is published to (see section 7.2).
This would imply, that only those pods are noti�ed of an event, that host people
the creator of the event shares with. That feature extension would emphasize
the attempt to obey privacy concerns of the user base.

Nevertheless, the implementation is integrated into Diaspora, a DSN, which
is considered more privacy-protecting by design because of the decentralized
data storage. There is no central data storage, that can be compromised, which
is a great bene�t for informational self-determination.

6.4 Concept assembly

The attempt to extend Diaspora with events has been shared at an early stage
with the Diaspora community. There is even a bounty �led on this issue by
Jansen (2015). This has also not been the �rst attempt, but none has reached
actual development progress, that has been made public. But there has been
some feedback on how to approach this.

A proposal by Robinson (2015) stated the post extension strategy (see sec-
tion 4.1). This approach would have been fairly easy to implement and promise
fast result delivery. However, as the concept also intended to feature administra-

51

tion options for multiple users, this approach became inconvenient to su�ce that
goal. It seemed more or less like a coding exercise and lacks a certain amount of
scienti�c aspiration.

Instead, the concept of an event to be a separate entity next to a post was
focused on. It immediately suggested itself to adopt the post model code to �rst
imitate a post with the same features but another name, and then adapt it to
become an event. This would also cause an abstraction layer to be �gured out,
that would not only work for both a post and an event, but also as a strategy
model that could be adapted for other DSNs.

Unfortunately, it came out that the code base of Diaspora did not allow this
approach to be successful. The structure of the code is perceived very complex
and poorly structured. Section 6.5 discusses the code situation in detail. After
some time of analysis this approach had to be discounted as well.

The only way to actually develop at least some basic event functionality was
deemed to be the bottom-up strategy. This would leave most of the Diaspora code
aside for a moment, and focus on pure Ruby on Rails development. Applying its
MVC architecture, the structure featuring an individual event model and another
model for each of the relations to the event has been successfully implemented
in a reasonable amount of development time.

Ruby on Rails, being a well-engineered development framework for web ap-
plications, incorporated well in that process – for the time of developing code
that just covers functionality on a single instance. Once it came to federation, it
was obvious to go back to rely on what Diaspora already does with posts, and
adapt it for events. This implicates the occupation of concepts of the Diaspora
code base, which ended up being the most time-consuming part of the entire
implementation.

Another obstacle in the assembly of the concept was the fact, that Diaspora
does not make use of most of the View-Part of the MVC architecture, Ruby on
Rails provides. Instead, it imposes on backbone.js, a framework for rich-client
web applications. While in production this may be a good idea, for the pur-
pose of the implementation as a proof of concept for this thesis, it would have
been a tremendous amount of work to implement the user interface concept (see
section 4.8) just to demonstrate the actual functionality to share events via fed-
eration.

The slow development advance resulted in dropping any implementation of
the user interface concept. To prove the functionality of the concept, the JSON
API is su�cient to ful�ll that task.

52

6.5 Implementation Experience

While Ruby on Rails is one of the major web application frameworks out there,
it is somehow di�erent from other frameworks and software environments due
to its roots in the Ruby programming language. It is focused on being easy to
read, as it was regular English language. Methods may take their parameters not
within parenthesis, but attached as a comma-separated list. If the last parameter
is a complex object, no braces are needed, it may as well be served just comma-
separated.

This can be unfamiliar for users of other programming languages, but if all
conventions are strictly maintained, code can be readable and functional. Ruby
on Rails in general is well-engineered and production-ready for building web
applications – if there is a development concept for a software project, and if
conventions are followed. Diaspora does not have that.

Diaspora is build upon Ruby on Rails with those concepts and conventions
in mind, but it does not follow them consequently. Besides the default MVC ele-
ments models, views, controllers and helpers, there are other elements in-
troduced, like presenters, serializers, workers, services, uploaders and
more. None of this is documented in the Diaspora developer wiki (2014), nor
explained within the code.

As a prominent example, there is a very central module for federation called
Postzord, which is most likely a reference to robots in Power Rangers comics
(Ryulong, 2013). Regarding the conventions of self-speaking code, this is not
helpful at all.

To emphasize the deep nesting of code within Diaspora, the code snippets in
appendix B.1 and B.2 and show federation of an event, how it is created, sent,
received and stored. Federation is one of the major features of Diaspora, but the
implementation is far from being stable. There is a lot of discussion about how to
handle public post federation going on until today (Robinson, 2013). The current
implementation status might work somehow, but is not reliably useful to easily
understand and extend it. This caused the implementation of federated events to
take most of the development time.

6.6 Open Source Software Development

The reason for the bad condition of the code base is situated in the history of
the project. Back in 2010 there were four enthusiastic college students hacking a
software from scratch, �nanced by a crowd-funded campaign. They were work-
ing under pressure and released a hardly functional application early to users
(Vijayan, 2010). After two years of further feature implementation and a case

53

of death within the developer team the original developers quit working on the
project and the code got released to the public.

From that time it was the job of the developer community to evolve the soft-
ware. This is hard, when people write code in their free time. Figure 6.2 shows
the commit history of the entire project. Since the original developers quit in
2012, the commit frequency decreased immensely.

Figure 6.2: Contributions to develop branch from June 6, 2010 to October 31,
2015, excluding merge commits (Github, 2015)

In contrast to other large FOSS projects like for example Mediawiki or Word-
press, there is no company behind Diaspora, that hires developers to work for
money on the project. So it is up to the free time of every single contributor,
what is done and how it is done. It is obvious, that there are lots of pieces within
the software, that have not been modeled after a concept, but just adapted from
other pieces. Patches and new components have just been added somewhere
and somehow, with the only intention to improve a single feature. Considera-
tions for aspects of professional software development, like following a larger
concept, adaptivity, documentation or even testing have been neglected in favor
of getting things done.

This is totally reasonable, as people do this in their free time. There are more
than 300 contributors to Diaspora (Github, 2015), and many of them have only
contributed very little code. There is an issue list on Github, and whoever feels
capable of getting hands on it, does it.

Some contributors are considered core developers, who keep track of pull
requests and review the code. There is an online community board on Loomio
(2015), where discussions on project management are held. But many discus-
sions are open for months without participation of any volunteer. This is also
done in their free time, so the reliability of their job depends on the form of the
day. When there are questions about the code, which are usually done on IRC,
answers very often sum up with the hint to “read the code”. Of course, it is not
a support channel run by a professional support sta�, so this again is nothing to
subject for criticism. But it explains the overall code quality, and the rather rus-
tic development status of the Diaspora software itself, compared to apparently
competing services like Facebook.

54

Chapter 7

Conclusion

This thesis discussed a concept to establish social event functionality in a dis-
tributed social network. It has been indicated as a challenging operation, as a
social event consists of a rather complex data structure, and its federation within
a distributed network has been an attempt that has not been introduced before.

Generally ambivalent circumstances of contributing to free and open source
software community projects state reasons for the stated limitations. But as cur-
rently common social networks are suspect to be compromised in terms of pri-
vacy, due to their centralized structure, distributed social networks are consid-
ered more promising concerning privacy aspects.

The �ndings of this thesis still encourage the approach to continue contribut-
ing into free and open source projects. This �nal chapter summarizes its contri-
butions. A discussion of open issues and future work round it up.

7.1 Summary

The �rst chapter introduced the topic of federated events in distributed social
networks. It stated the motivation and the presumption for this thesis.

Chapter 2 �rst de�ned DSN as the fundamental term within this thesis. It
provided an overview of DSN related work, explained the signi�cance of free
and open source software and introduced social coding platform development,
version control development models and test driven development as being fun-
damental basics of modern web software development, that are required to con-
tribute to Diaspora.

The key features of the Diaspora DSN itself have been analyzed in chapter 3.
A comparison to other DSN software stated, why Diaspora was chosen as ex-
ample application for this thesis. The architecture overview described the basics
of the interaction of di�erent pods, before the federation concept of Diaspora

55

was explained. Applied software components, the user interface and the cur-
rent development status of Diaspora were reviewed brie�y, to provide an overall
impression of Diaspora.

Chapter 4 introduced the concept to integrate events into Diaspora. A strat-
egy to develop models for social events in a web application was discussed, before
the primary properties of an event and its administrational aspect were intro-
duced. The signi�cant aspects of relations and federation of an event were dis-
cussed, as well as alternative and revoked approaches, before the feature set of
the concept was constituted. Finally, a design mockup for an integrated user in-
terface for events within the Diaspora frontend application has been introduced.

The implementation of the concept is documented in chapter 5. First, the
integration of the concept within the MVC architecture of Ruby on Rails was de-
scribed. Afterwards, further implementation aspects like the database migration,
routing, the branching strategy and testing of the implementation were shown.

In Chapter 6 the concept and implementation were evaluated. The function-
ality API was examined, followed by a load test with a large number of events.
Thereafter, the general assembly of the concept has been discussed along with
the evaluation of the development environment and overall experiences with de-
veloping free and open source software.

7.2 Outlook

In free and open source software development it is obvious to state that a project
is never �nished. There may be a concept for a given feature, that can be ad-
equately implemented. But there will always be details that can be �ne-tuned,
un�xed bugs and further feature requests, and there is no doubt, that this is true
for this thesis.

The output of this work is a proof-of-concept for federating events in dis-
tributed social networks, manifested as JSON API, that can be operated with
any client. To actually make this feature able to be integrated into Diaspora for
production, a user interface as introduced in section 3.5 must be developed and
integrated into the current backbone.js client application of Diaspora.

In future development there may also be features, that pay respect to even
more privacy related features. In this implementation, any event is assumed to
be public. However, as posts in Diaspora may be either published publicly or
restricted to certain aspects, that are de�ned for and by every user individually,
this should also be possible with events. A challenging aspect within this use
case will be the relation relayability.

Future implementations of events could also be advanced with more sophis-
ticated features. The location feature that Diaspora already integrates, could

56

be adopted for events. Locations that are used periodically, could be saved and
provided as an automatic suggestion. Being an evolved entity, a location could
become an entity that may be administrated in analogy to an event, providing
contact data, opening times and further general information.

The future development of Diaspora in general is cut into multiple ways. On
the one hand, the existing code must be analyzed and refactored immensely. On
the other hand, there are many features, that people are used to from commercial
social network services, that should be available for Diaspora as well, to make
people switch to Diaspora. Both of this is hard to achieve, if developers can only
contribute to the project in their spare time.

Developing free and open source software has lots of advantages for secu-
rity and independence. But as long as companies around the world pay their
employees to run Facebook pages, rather than to write code for projects like Di-
aspora, those projects will not be able to compete, but remain roughly functional
free time projects to some enthusiasts, while the big players will keep increasing
their in�uence in everyday life of the people around the world, and the awkward
concentration of power mentioned in chapter 1 will not disperse.

57

58

Appendix A

Technical documentation

A.1 Development setup
The development setup consists of three virtual machines, hosted on a VMWare
environment, each equipped with the following software stack:

• Debian GNU/Linux 8.0 Jessie
• Ruby 2.2.1p85
• Rails 4.2.5
• Bundler 1.10.6

• MariaDB 10.0.21
• OpenSSL 1.0.2d
• git 2.6.1

The instances run inside a virtual Local Area Network without Domain Name
System, so the existence of the instances have been con�gured on each instance
as well as on the local development machine, using /etc/hosts �le:

1 4 1 . 7 6 . 4 2 . 7 5 madev1
1 4 1 . 7 6 . 4 2 . 7 6 madev2
1 4 1 . 7 6 . 4 2 . 8 0 madev3

The hostname of each instance has been declared in /etc/hostname. The
instances could be reached from the local development machine via their host
name only, for example http://madev1:3000

Local development environment used for implementation:
• Macbook Pro v3,1 2,2 GHz 4GB RAM
• OSX 10.11 El Capitan
• Atom 1.0
• git 2.6.3

• httpie 0.9.2
• Iterm2 2.1.4
• Firefox 42

59

A.2 Installation process
• Install Linux
• Clone Diaspora from a remote repository, i.e. Github

cd ~
g i t c l o n e g i t : / / g i t h u b . com / d i a s p o r a / d i a s p o r a . g i t
cd d i a s p o r a

The cd diaspora is very important, because it initiates path con�guration
• Copy database con�guration �le and insert the credentials:

cp c o n f i g / d a t a b a s e . yml . example c o n f i g / d a t a b a s e . yml

• Copy general con�guration �le and insert con�guration details
cp c o n f i g / d i a s p o r a . yml . example c o n f i g / d i a s p o r a . yml

The only important setting is url: ḧttp://madev1:3000¨), because
once a pod has been started for the �rst time, database entries rely on this
setting.

• Install ruby components
gem i n s t a l l b u n d l e r
b in / bund le i n s t a l l −−with mysql

• Create database entries
b in / rake db : c r e a t e db : schema : l o a d

It is important to use the rake script shipped with with diaspora, as this is
is con�gured for optimal performance.

• Start the server
b in / r a i l s s e r v e r −b 0 . 0 . 0 . 0

The -b option tells the server to listen to any connection instead only the
one con�gured in config/diaspora.yml. It has been found that this is
necessary for people search between the di�erent instances.

60

Appendix B

Code examples

B.1 Send an event

eve n t = Event . c r e a t e (
a u t h o r : c u r r e n t _ u s e r . person ,
t i t l e : params [: t i t l e]

)
P o s t z o r d : : Dispatcher .defer_bui ld_and_post (c u r r e n t _ u s e r , ev en t)

Listing B.1: app/controllers/events_controller.rb

def s e l f . d e f e r _ b u i l d _ a n d _ p o s t (user , o b j e c t , o p t s = { })
. . .

Workers : : DeferredDispatch.perform_async (u s e r . id , o b j e c t . c l a s s .
t o_s , o b j e c t . id , o p t s)

end

Listing B.2: lib/postzord/dispatcher.rb

def perform (u s e r _ i d , o b j e c t _ c l a s s _ n a m e , o b j e c t _ i d , o p t s)
u s e r = User . f i n d (u s e r _ i d)
o b j e c t = o b j e c t _ c l a s s _ n a m e . c o n s t a n t i z e . f i n d (o b j e c t _ i d)
o p t s = H a s h W i t h I n d i f f e r e n t A c c e s s . new (o p t s)
o p t s [: s e r v i c e s] = u s e r . s e r v i c e s . where (type : o p t s . d e l e t e (:

s e r v i c e _ t y p e s))

a d d _ a d d i t i o n a l _ s u b s c r i b e r s (o b j e c t , o b j e c t _ c l a s s _ n a m e , o p t s)
P o s t z o r d : : Dispatcher .bui ld (user , o b j e c t , o p t s) . p o s t

rescue A c t i v e R e c o r d : : RecordNotFound # The t a r g e t g o t d e l e t e d
b e f o r e t h e j o b was run

end

Listing B.3: app/workers/deferred_dispatch.rb

61

def s e l f . b u i l d (user , o b j e c t , o p t s = { })
unless o b j e c t . r e s p o n d _ t o ? : t o _ d i a s p o r a _ x m l

r a i s e ’ Th i s ␣ o b j e c t ␣ does ␣ not ␣ r e s p o n d _ t o ? ␣ t o _ d i a s p o r a ␣ xml . ␣ ␣
Try ␣ i n c l u d i n g ␣ D ia sp or a : : F e d e r a t e d : : Base ␣ i n t o ␣ your ␣ o b j e c t ’

end
i f se l f .ob jec t_should_be_processed_as_publ i c ? (o b j e c t)

P o s t z o r d : : D i s p a t c h e r : : P u b l i c . new (user , o b j e c t , o p t s)
e l se

P o s t z o r d : : D i s p a t c h e r : : P r i v a t e . new (user , o b j e c t , o p t s)
end

end

def se l f .ob jec t_should_be_processed_as_publ i c? (o b j e c t)
i f o b j e c t . r e s p o n d _ t o ? (: p u b l i c ?) && o b j e c t . p u b l i c ?

true
e l se

f a l s e
end

end

def post
s e l f . de l i ve r_ to_ se rv i c e s (@opts [: u r l] , @opts [: s e r v i c e s] | | [])
s e l f . post _ t o _ s u b s c r i b e r s i f @ s u b s c r i b e r s . p r e s e n t ?
s e l f . p r o c e s s _ a f t e r _ d i s p a t c h _ h o o k s
@object

end

def de l i ve r _ to_ se rv i c e s (u r l , s e r v i c e s)
i f @object . r e s p o n d _ t o ? (: p u b l i c) && @object . p u b l i c

d e l i v e r _ t o _ h u b
end
s e r v i c e s . each do | s e r v i c e |

i f @object . i n s t a n c e _ o f ? (S t a t u s M e s s a g e)
Workers : : P o s t T o S e r v i c e . per form_async (s e r v i c e . id , @object .

id , u r l)
end
i f @object . i n s t a n c e _ o f ? (S i g n e d R e t r a c t i o n)

Workers : : D e l e t e P o s t F r o m S e r v i c e . per form_async (s e r v i c e . id ,
@object . t a r g e t . i d)

end
end

end

Listing B.4: lib/postzord/dispatcher.rb

62

B.2 Receive an event

def r e c e i v e !
i f @author && salmon . v e r i f i e d _ f o r _ k e y ? (@author . p u b l i c _ k e y)

parse_and_receive (salmon . p a r s e d _ d a t a)
e l se

l o g g e r . e r r o r " even t = r e c e i v e ␣ s t a t u s = a b o r t ␣ r e a s o n = ’
n o t _ v e r i f i e d ␣ f o r ␣ key ’ ␣ " \

" r e c i p i e n t = # { @user . d i a s p o r a _ h a n d l e } ␣ s e n d e r = # {
@salmon . a u t h o r _ i d } "

end
rescue => e

l o g g e r . e r r o r " f a i l e d ␣ t o ␣ r e c e i v e ␣ # { @object . c l a s s } ␣ from ␣ s e n d e r
: # { @author . i d } ␣ f o r ␣ u s e r : # { @user . i d } : ␣ # { e . message } \ n " \

" # { @object . i n s p e c t } "
r a i s e e

end

def parse_and_receive (xml)
@object | | = D i a s po ra : : P a r s e r . from_xml (xml)
l o g g e r . i n f o " u s e r : # { @user . i d } ␣ s t a r t i n g ␣ p r i v a t e ␣ r e c e i v e ␣ from ␣

person : # { @author . gu id } "
va l ida t e_ob j e c t
s e t _ a u t h o r !
r e c e i v e _ o b j e c t

end

def va l ida t e_ob j e c t
r a i s e D ia sp ora : : XMLNotParseable i f @object . ni l ?
r a i s e D ia sp ora : : C o n t a c t R e q u i r e d U n l e s s R e q u e s t i f

c o n t a c t _ r e q u i r e d _ u n l e s s _ r e q u e s t
r a i s e D ia sp ora : : R e l a y a b l e O b j e c t W i t h o u t P a r e n t i f

r e l a y a b l e _ w i t h o u t _ p a r e n t ?
assign_sender_handle_if_request

r a i s e D ia sp ora : : AuthorXMLAuthorMismatch i f
author_does_not_match_xml_author ?

end

def assign_sender_handle_if_request
s p e c i a l c a s e y
i f @object . i s _ a ? (Reques t)

@object . s e n d e r _ h a n d l e = @author . d i a s p o r a _ h a n d l e
end

end

Listing B.5: lib/postzord/receiver/private.rb

63

def author_does_not_match_xml_author ?
return fa l s e unless @author . d i a s p o r a _ h a n d l e != xml_author
l o g g e r . e r r o r " even t = r e c e i v e ␣ s t a t u s = a b o r t ␣ r e a s o n = ’ a u t h o r ␣ i n ␣ xml

␣ does ␣ not ␣ match ␣ r e t r i e v e d ␣ person ’ ␣ " \
" type = # { @object . c l a s s } ␣ s e n d e r = # { @author .

d i a s p o r a _ h a n d l e } "
true

end

Listing B.6: lib/postzord/receiver.rb

def rece ive (user , person)
r a i s e ’ You ␣ must ␣ o v e r r i d e ␣ rece ive ␣ i n ␣ o r d e r ␣ t o ␣ e n a b l e ␣ f e d e r a t i o n

␣ on ␣ t h i s ␣ model ’
end

Listing B.7: lib/diaspora/federated/base.rb

def rece ive (user , person)
s e l f . s ave

end

Listing B.8: app/models/event.rb

64

Acronyms

API Application Programming Interface.

DSN distributed social network.

EBSN event-based social network.

FOSS free and open source software.

GUID globally unique identi�er.

HTTP Hypertext Transfer Protocol.

ID identi�er.
IRC Internet Relay Chat.

JSON JavaScript Object Notation.

MVC Model-View-Controller.

REST REpresentational State Transfer.
RSA the Rivest-Shamir-Adleman cryptosystem.

TDD test-driven development.

URL Uniform Resource Locator.

XMPP Extensible Messaging and Presence Protocol.

65

66

Bibliography

Abel, Fabian et al. (2011). “Semantic enrichment of twitter posts for user pro�le
construction on the social web”. In: The Semanic Web: Research and Applica-
tions. Springer, pp. 375–389.

Anderson, Chris (2008). “The End of Theory: The Data Deluge Makes the Scien-
ti�c Method Obsolete”. In:

Baran, Paul (1964). “On distributed communications networks”. In: Communica-
tions Systems, IEEE Transactions on 12.1, pp. 1–9.

Beck, Kent (2003). Test-driven development: by example. Addison-Wesley Profes-
sional.

Boutet, Antoine et al. (2015). “C3PO: A Network and Application Framework for
Spontaneous and Ephemeral Social Networks”. In: Web Information Systems
Engineering–WISE 2015. Springer, pp. 348–358.

Boyd, Danah and Nicole Ellison (2010). “Social network sites: de�nition, history,
and scholarship”. In: IEEE Engineering Management Review 3.38, pp. 16–31.

BuddyCloud (2015). http://buddycloud.com. Online, Accessed Jul. 15, 2015.
Carvajal-Gómez, Raziel et al. (2015). “WebGC Gossiping on Browsers Without a

Server [Live Demo/Poster]”. In: Web Information Systems Engineering–WISE
2015. Springer, pp. 332–336.

Çelik, Tantek and Brian Suda (2013). http : / / microformats . org / wiki /
hcard/. Online, Accessed Nov. 2, 2015.

Chambliss, William J (1995). “Crime control and ethnic minorities: Legitimizing
racial oppression by creating moral panics”. In: Ethnicity, race, and crime: Per-
spectives across time and place, pp. 235–258.

Chelimsky, David et al. (2014). http://rspec.info. Online, Accessed Jul. 15,
2015.

Constine, Josh (2015). http://techcrunch.com/2015/07/29/will-facebook-
launch-an-events-app/. Online, Accessed Sep. 14, 2015.

Creative Commons (2002). http://creativecommons.org/licenses/. On-
line, Accessed Nov. 16, 2015.

67

http://buddycloud.com
http://microformats.org/wiki/hcard/
http://microformats.org/wiki/hcard/
http://rspec.info
http://techcrunch.com/2015/07/29/will-facebook-launch-an-events-app/
http://techcrunch.com/2015/07/29/will-facebook-launch-an-events-app/
http://creativecommons.org/licenses/

Dabbish, Laura et al. (2012). “Social coding in GitHub: transparency and collabo-
ration in an open software repository”. In: Proceedings of the ACM 2012 con-
ference on Computer Supported Cooperative Work. ACM, pp. 1277–1286.

Dam, Rob van den, Ekow Nelson, and Zygmunt Lozinski (2008). “The changing
face of communication”. In: IBM Global Business Services.

DeSN15 (2015). 1stWorkshop onDecentralized Social Networks. http://datasets-
satin.telecom-st-etienne.fr/aboutet/DeSN15/. Online, Accessed
Oct. 15, 2015.

Dhekane, Ruturaj and Brion Vibber (2011). “Talash: Friend Finding In Federated
Social Networks.” In: LDOW.

Diaspora developer wiki (2014). https://wiki.diasporafoundation.org/
An_introduction_to_the_Diaspora_source. Online, Accessed Jun. 2,
2015.

Driessen, Vincent (2010). A successful Git branching model. http://nvie.com/
posts/a-successful-git-branching-model/. Online, Accessed Jul. 15,
2015.

Engestrom, Jyri (2013). http://www.salmon-protocol.org/. Online, Accessed
Nov. 2, 2015.

Entypo Font Icon Library (2015). http://dsyko.github.io/meteor-entypo/.
Online, Accessed Aug. 27, 2015.

Faldrian (2015). https://wiki.diasporafoundation.org/Release_process.
Online, Accessed Nov. 3, 2015.

Fitzpatrick, Brad et al. (2014). http://pubsubhubbub.github.io/PubSubHubbub.
Online, Accessed Aug. 27, 2015.

Free Software Foundation (2001). https://www.gnu.org/philosophy/free-
sw.html. Online, Accessed Oct. 15, 2015.

— (2007a). http://www.gnu.org/licenses/gpl.html. Online, Accessed
Nov. 16, 2015.

— (2007b). http://www.gnu.org/licenses/agpl.html. Online, Accessed
Nov. 16, 2015.

Friendica Directory (2015). http://dir.friendica.com/. Online, Accessed
Aug. 18, 2015.

Git (2005). http://git-scm.com/. Online, Accessed Nov. 16, 2015.
Github (2015). https://github.com/diaspora/diaspora/graphs/contributors/.

Online, Accessed Nov. 3, 2015.
GSTools (2015). http://gstools.com/. Online, Accessed Aug. 18, 2015.
Hammant, Paul (2013).What is Trunk BasedDevelopment? http://paulhammant.

com/2013/04/05/what-is-trunk-based-development/. Online, Ac-
cessed Jul. 15, 2015.

Hanik, Filip (2007). http://people.apache.org/~fhanik/kiss.html. On-
line, Accessed Aug. 27, 2015.

68

http://datasets-satin.telecom-st-etienne.fr/aboutet/DeSN15/
http://datasets-satin.telecom-st-etienne.fr/aboutet/DeSN15/
https://wiki.diasporafoundation.org/An_introduction_to_the_Diaspora_source
https://wiki.diasporafoundation.org/An_introduction_to_the_Diaspora_source
http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/
http://www.salmon-protocol.org/
http://dsyko.github.io/meteor-entypo/
https://wiki.diasporafoundation.org/Release_process
http://pubsubhubbub.github.io/PubSubHubbub
https://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/philosophy/free-sw.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/agpl.html
http://dir.friendica.com/
http://git-scm.com/
https://github.com/diaspora/diaspora/graphs/contributors/
http://gstools.com/
http://paulhammant.com/2013/04/05/what-is-trunk-based-development/
http://paulhammant.com/2013/04/05/what-is-trunk-based-development/
http://people.apache.org/~fhanik/kiss.html

Haß, Jonne (2013). https://wiki.diasporafoundation.org/Diasporas_
components_explained. Online, Accessed Aug. 18, 2015.

Hoepman, Jaap-Henk and Bart Jacobs (2007). “Increased security through open
source”. In: Communications of the ACM 50.1, pp. 79–83.

IANA (2015). http://www.iana.org/assignments/http-status-codes.
Online, Accessed Nov. 16, 2015.

IETF (2006). https://tools.ietf.org/html/rfc4648/. Online, Accessed
Nov. 2, 2015.

— (2009). https://tools.ietf.org/html/rfc5545. Online, Accessed Nov.
16, 2015.

— (2011). https://tools.ietf.org/html/rfc6265. Online, Accessed Nov.
16, 2015.

Jansen, Nils (2015). https : / / www . bountysource . com / issues / 59061 -
events-and-rsvp-module. Online, Accessed Nov. 3, 2015.

Karlitschek, Frank et al. (2015). https://owncloud.org/. Online, Accessed
Nov. 3, 2015.

Kayes, Imrul and Adriana Iamnitchi (2015). “A Survey on Privacy and Security
in Online Social Networks”. In: arXiv preprint arXiv:1504.03342.

Konforty, Dor et al. (2015). “Synereo: The Decentralized and Distributed Social
Network”. In:

Landau, Susan (2013). “Making sense from Snowden”. In: IEEE Security & Privacy
Magazine 4, p. 5463.

Liu, Xingjie et al. (2012). “Event-based social networks: linking the online and
o�ine social worlds”. In: Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, pp. 1032–1040.

Loomio (2015). https://www.loomio.org/g/EseV9p4X/diaspora-community/.
Online, Accessed Nov. 16, 2015.

Maka, Stephan (2011). “Design and implementation of a federated social net-
work”. PhD thesis. Saechsische Landesbibliothek-Staats-und Universitaets-
bibliothek Dresden.

McMillan, Andrew (2014). http://davical.org/. Online, Accessed Nov. 3,
2015.

Menon, Aravind (2012). “Big data facebook”. In: Proceedings of the 2012 workshop
on Management of big data systems. ACM, pp. 31–32.

Nejma, Ghada Ben et al. (2015). “Service Discovery for Spontaneous Communi-
ties in Pervasive Environments”. In: Web Information Systems Engineering–
WISE 2015. Springer, pp. 337–347.

Norris, Will (2014). https://webfinger.net/. Online, Accessed Nov. 2, 2015.
Peeters, Stijn (2013). http://networkcultures.org/unlikeus/resources/

articles/what-is-a-federated-network. Online, Accessed Jun. 9, 2015.

69

https://wiki.diasporafoundation.org/Diasporas_components_explained
https://wiki.diasporafoundation.org/Diasporas_components_explained
http://www.iana.org/assignments/http-status-codes
https://tools.ietf.org/html/rfc4648/
https://tools.ietf.org/html/rfc5545
https://tools.ietf.org/html/rfc6265
https://www.bountysource.com/issues/59061-events-and-rsvp-module
https://www.bountysource.com/issues/59061-events-and-rsvp-module
https://owncloud.org/
https://www.loomio.org/g/EseV9p4X/diaspora-community/
http://davical.org/
https://webfinger.net/
http://networkcultures.org/unlikeus/resources/articles/what-is-a-federated-network
http://networkcultures.org/unlikeus/resources/articles/what-is-a-federated-network

Popescu, Andrei (2014). Geolocation API Speci�cation. http://dev.w3.org/
geo/api/spec-source.html. Online, Accessed Aug. 18, 2015.

Preston-Werner, Tom (2013). https://semver.org. Online, Accessed Jul. 15,
2015.

Robinson, Jason (2013). https://www.loomio.org/d/9vpoe0UR/public-
post-federation. Online, Accessed Nov. 3, 2015.

— (2015). https : / / github . com / diaspora / diaspora / issues / 1359 #
issuecomment-101998582. Online, Accessed Nov. 3, 2015.

Rogers, Adam (2008). “Tracking the News: A Smarter Way to Predict Riots and
Wars”. In:

Roztočil, Jakub (2015). http://httpie.org/. Online, Accessed Oct. 13, 2015.
Ryulong (2013). https://en.wikipedia.org/wiki/Zord. Online, Accessed

Nov. 3, 2015.
Schneider, Jerome (2014). http://baikal-server.com/. Online, Accessed Nov.

3, 2015.
StatusNet (2015). https://gnu.io/social/about/. Online, Accessed Jul. 15,

2015.
The Federation (2015). http://the-federation.info/. Online, Accessed Aug.

18, 2015.
Tilley, Sean (2012a). https://wiki.diasporafoundation.org/Git_Workflow.

Online, Accessed Jul. 15, 2015.
— (2012b). https://wiki.diasporafoundation.org/Testing_workflow.

Online, Accessed Jul. 15, 2015.
— (2012c). https://wiki.diasporafoundation.org/Federation_message_

semantics#Relayability. Online, Accessed Aug. 27, 2015.
— (2012d). https://wiki.diasporafoundation.org/Federation_protocol_

overview. Online, Accessed Aug. 27, 2015.
Twain (2015).Nominatim. http://wiki.openstreetmap.org/wiki/Nominatim.

Online, Accessed Aug. 18, 2015.
Varian, Hal R and Carl Shapiro (1999). “Information rules: a strategic guide to the

network economy”. In: Harvard Business School Press, Cambridge.
Vasilescu, Bogdan, Vladimir Filkov, and Alexander Serebrenik (2013). “Stack-

Over�ow and GitHub: Associations between Software Development and Crowd-
sourced Knowledge”. In: Social Computing / IEEE International Conference
on Privacy, Security, Risk and Trust, 2010 IEEE International Conference on,
pp. 188–195. doi: http://doi.ieeecomputersociety.org/10.1109/
SocialCom.2013.35.

Vijayan, Jaikumar (2010). Facebook wannabe Diaspora hit on security issues. http:
//www.computerworld.com/article/2515604/web-apps/facebook-
wannabe-diaspora-hit-on-security-issues.html. Online, Accessed
Nov. 16, 2015.

70

http://dev.w3.org/geo/api/spec-source.html
http://dev.w3.org/geo/api/spec-source.html
https://semver.org
https://www.loomio.org/d/9vpoe0UR/public-post-federation
https://www.loomio.org/d/9vpoe0UR/public-post-federation
https://github.com/diaspora/diaspora/issues/1359#issuecomment-101998582
https://github.com/diaspora/diaspora/issues/1359#issuecomment-101998582
http://httpie.org/
https://en.wikipedia.org/wiki/Zord
http://baikal-server.com/
https://gnu.io/social/about/
http://the-federation.info/
https://wiki.diasporafoundation.org/Git_Workflow
https://wiki.diasporafoundation.org/Testing_workflow
https://wiki.diasporafoundation.org/Federation_message_semantics#Relayability
https://wiki.diasporafoundation.org/Federation_message_semantics#Relayability
https://wiki.diasporafoundation.org/Federation_protocol_overview
https://wiki.diasporafoundation.org/Federation_protocol_overview
http://wiki.openstreetmap.org/wiki/Nominatim
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/SocialCom.2013.35
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/SocialCom.2013.35
http://www.computerworld.com/article/2515604/web-apps/facebook-wannabe-diaspora-hit-on-security-issues.html
http://www.computerworld.com/article/2515604/web-apps/facebook-wannabe-diaspora-hit-on-security-issues.html
http://www.computerworld.com/article/2515604/web-apps/facebook-wannabe-diaspora-hit-on-security-issues.html

Westin, Alain (1970). “Privacy and freedom. 1967”. In: Atheneum, New York.
Widenius, Michael (2015). https://mariadb.org/. Online, Accessed Nov. 16,

2015.
Wikipedia (2015). https : / / en . wikipedia . org / wiki / Comparison _ of _

software_and_protocols_for_distributed_social_networking. On-
line, Accessed Aug. 18, 2015.

Wordnik (2015). https://www.wordnik.com/words/pod. Online, Accessed
Nov. 2, 2015.

Zhitomirskiy, Ilya et al. (2011). http://blog.diasporafoundation.org/
2011/09/21/diaspora- means- a- brighter- future- for- all- of-
us.html. Online, Accessed Aug. 18, 2015.

— (2012). http://blog.diasporafoundation.org/2012/08/27/announcement-
diaspora-will-now-be-a-community-project.html. Online, Accessed
Aug. 18, 2015.

71

https://mariadb.org/
https://en.wikipedia.org/wiki/Comparison_of_software_and_protocols_for_distributed_social_networking
https://en.wikipedia.org/wiki/Comparison_of_software_and_protocols_for_distributed_social_networking
https://www.wordnik.com/words/pod
http://blog.diasporafoundation.org/2011/09/21/diaspora-means-a-brighter-future-for-all-of-us.html
http://blog.diasporafoundation.org/2011/09/21/diaspora-means-a-brighter-future-for-all-of-us.html
http://blog.diasporafoundation.org/2011/09/21/diaspora-means-a-brighter-future-for-all-of-us.html
http://blog.diasporafoundation.org/2012/08/27/announcement-diaspora-will-now-be-a-community-project.html
http://blog.diasporafoundation.org/2012/08/27/announcement-diaspora-will-now-be-a-community-project.html

	Introduction
	Presumption
	Outline

	Fundamentals
	DSNs
	DSN related work
	FOSS
	Distributed software development

	Diaspora DSN Analysis
	Comparison to other DSN software
	Architecture overview
	Federation
	Applied software components
	User Interface
	Development status

	Concept
	Model development strategy
	Properties
	Administration
	Relations to an event
	Federation
	Feature set
	Alternative approach using iCalendar
	User Interface

	Implementation
	MVC Integration
	Database migration
	Routing
	Branching
	Testing
	About GUIDs

	Evaluation
	RESTful API performance
	Performance
	Privacy
	Concept assembly
	Implementation Experience
	Open Source Software Development

	Conclusion
	Summary
	Outlook

	Technical documentation
	Development setup
	Installation process

	Code examples
	Send an event
	Receive an event

	Acronyms
	Bibliography

