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Abstract: Social media data are widely used to gain insights about social incidents, whether on a
local or global scale. Within the process of analyzing and evaluating the data, it is common practice to
download and store it locally. Considerations about privacy protection of social media users are often
neglected thereby. However, protecting privacy when dealing with personal data is demanded by
laws and ethics. In this paper, we introduce a method to store social media data using the cardinality
estimator HyperLogLog. Based on an exemplary disaster management scenario, we show that social
media data can be analyzed by counting occurrences of posts, without becoming in possession of the
actual raw data. For social media data analyses like these, that are based on counting occurrences,
cardinality estimation suffices the task. Thus, the risk of abuse, loss, or public exposure of the data
can be mitigated and privacy of social media users can be preserved. The ability to do unions
and intersections on multiple datasets further encourages the use of this technology. We provide a
proof-of-concept implementation for our introduced method, using data provided by the Twitter API.

Keywords: social media; privacy protection; data retention; disaster management; geocode systems;
privacy-aware data storage; cardinality estimation; hyperloglog algorithm; Twitter

1. Introduction

Social media services are ubiquitous and often faster than conventional media in terms
of information distribution. This advantage is made use of in numerous situations, for
example in disaster management [1]. Modern disaster management concepts, such as
Virtual Operation Support Teams (VOSTs), even depend on this kind of information source.
For them to be able to accomplish their tasks, social media data are being gathered and
stored, before being analyzed and evaluated.

Analyzing and evaluating social media data by counting appearances of posts that
contain certain information is a common practice. For example, the topic of their payload
content, but also their attached location data, date and time, or even information about
the user are valuable criteria to search for. The result then is a list of posts matching these
search criteria that can be used as a basis for diagrams or overview maps highlighting
trends or hot spot areas.

A common approach to gather the data is to query public interfaces provided by
social media services for either a real-time data stream or a historical list of posts, and store
the resulting data in local databases to be processed by analytics applications in order to
investigate their characteristics. This approach is called exploratory data analysis, but can
also be interpreted as data retention (see Section 2.2), a practice which is problematic in
numerous ways. Recent incidents of contact tracing data misuse [2] stand exemplarily for
side-effects of gathering large sets of personal data. Once a set of data has been gathered
for whatever reason, it is subject to being misused by third parties. Especially in disaster
management, personal data must be taken good care of. People being affected by disasters
are vulnerable. They are potentially dependent on receiving or sharing reliable information
or seeking help through social media services. It is even possible that using social media
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services is their only opportunity. This makes retention of this kind of data problematic in
terms of their original creators’ informational self-determination: once data are collected
and stored by a third party, their original creator can neither update nor delete it and, thus,
has lost control over it. Moreover, having access to such datasets enables to extract a list of
users who have obviously been at a certain place. This can be crucial in relevant situations
with special privacy interest for users, for example in refugee movements, demonstrations,
or riots.

This raises the question of the necessity to store large amounts of personal data from
the social media services. A progressive and privacy-aware approach to answer this
question is to not store collateral data, meaning that kind of data that are not necessary for
the accomplishment of the task that the data are being gathered for. In our research, we aim
to provide methods and technology to process social media data following this approach.
We propose to actively prevent the gathering of collateral data and, thus, better protect
privacy of social media data creators.

To achieve this, we introduce a method to store social media data in a structure, that is
build on top of a data storage algorithm called HyperLogLog (HLL). We show how to use
the technology on real-time streaming social media data with a usage scenario in disaster
management. This is especially significant, because the usefulness of such data is very
ephemeral. Once a disaster is overcome, most of the data have lost their relevance. This
increases the urgency to pay attention to what data need to be gathered in the first place.

Our concept is developed with generic application on any social media services or
networks in mind. For the presentation in this paper, we focus on data taken from the well-
known social media service Twitter. We reference Twitter posts as our example social media
data, which we accessed through the Twitter API with academic research access level [3].
Readers should be aware tough, that Twitter is only used exemplarily as a data source and
should not be considered an obligatory foundation for this work. The herein presented
concepts apply to data sourced from any social media platform, including decentralized
networks such as the fediverse [4].

In Section 2, we explain the fundamentals on disaster management in general, the
concept of VOSTs, why data retention is a serious threat and the fundamental functionality
of HLL. Following up in Section 3, we describe our proposed concept to store social media
data, without accidentally storing collateral data, by utilizing HLL to mitigate the data
retention threat. We also describe a potential scenario in disaster management, wherein
the concept is applied. In Section 4, we will give a short insight in the proof-of-concept
implementation. Afterwards, we discuss the pros and cons of our proposed method in
Section 5, concluding with an outlook of further research.

2. Fundamentals
2.1. Disaster Management

The ubiquity of social media services has made them an established interactive com-
munication platform for people worldwide. Today, they are a crucial data source in disaster
management. People actively use them to obtain information about incidents, extent of
damage, possible further dangers, or to keep in contact with their relatives and offer help [5].
The public traces of their social media usage is an enormous pool of valuable information
for situation assessment and rescue operations. Strategies to utilize this information are
subject to a wide range of research. Public organizations, such as Digital Humanitarian
Networks, emerge as new ways of digital organization structures, which enable new forms
of engagement [6]. A guided and updated bibliography on human-centered research in
crisis informatics [7] further outlines the scope of the topic.

Flood incidents mark special scenarios, in which social media data are crucial to handle
the situation. Khan et al. [8] show exemplarily that in certain situations, social media data
are even more reliable than real-time flow gauges data. While they do machine learning on
imagery and, thus, focus on assessing specific situations, Barker and Macleod [9] prototyped
flood-related Twitter data mining on a national scale. Even larger, de Bruijn et al. [10] show
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a global database of historic and real-time flood events based on social media. None of
these projects consider privacy issues within their research.

Fathi et al. [11] describe a digital help concept around Virtual Operations Support Teams
(VOSTs). These teams consist of groups of volunteers, who come together in times of crises,
disasters, or other potentially dangerous situations, such as demonstrations or events. Their
task is to constantly monitor social media services for any information that is relevant
to discover, assess, or mitigate dangerous situations and report to decision makers of
public authorities. However, protecting the privacy of social media users is not considered
a primary focus here either. In this paper, we will use this example of the subsequent
processing of social media data as an example scenario.

2.2. Data Retention

The work of VOSTs stands exemplarily for data analyses that utilize analytics software,
which provides contextual overviews on previously gathered data stored in local databases.
User interfaces take input to be crawled for in the stored data and return statistics of,
e.g., occurrences in their topical, spatial, temporal, or social facets. This can be the topic of
its payload text, the attached location data, date and time of its publication, or information
about the creators and who they follow. The process follows the concept of exploratory
data analysis, first described by Tukey [12], which can be summarized by “store everything
possible and look for interesting information in it afterwards”. Depending on the scenario,
only parts of the stored information may be relevant for the originally intended analysis,
in this scenario “look for potential disaster indications”. For example, knowing the user
names of the posts is not necessary for this analysis. Still, the entirety of every post has
been captured from the social media service. That means that if a post is being altered or
deleted on site of the social media service, it still resides in the original form at the place
where it has been downloaded to. Technically, that practice meets the requirements to be
termed data retention. Our understanding of the term is preserving data for an indefinite
time period with no specific purpose for any individual data item, but with the perspective
to make use of the information partially or in its entirety at a later point in time.

The term data retention is being discussed in the public mostly in conjunction with
surveillance of public telecommunication usage [13]. The European Digital Rights public
interest group states that “data retention practices interfere with the right to privacy at two
levels: at the level of retention of data, and at the level of subsequent access to that data by
law enforcement” [14]. In this paper, we make use of that term’s alarming connotation and
introduce it in a broader and more technical environment. Doing so, we want to emphasize
the explosive practice of recklessly dealing with personal data. According to the above
definition, the use of the term is valid for any case of storing and retending personal data
in stocks. Wright et al. [15] use it even to describe any storage of data underlying scientific
studies. Being in possession of personal data requires great responsibility in terms of data
security, as it opens up risks of possible abuse, theft, or accidental public exposure [16].
Guillou and Portner [17] break it down to the simple rule “the more data you have, the
more data you can lose”.

Players beyond governmental agencies and law enforcement, such as journalists,
researchers, or non-profit organizations, face even more challenges when dealing with
social media data. Stieglitz et al. [18] point out that the volume of data was most often cited
as a challenge by researchers. Wang and Ye [19] coin the term mining when summarizing
common techniques for social media analytics in natural disaster management.

The social impact of misusing large sets of data is well-known. Blanchette and John-
son [20] explain how data retention threatens the social concept of forgetfulness. Recent
incidents of contact tracing data misuse of German Police [2] and the Cambridge Analytica
scandal [21] are two examples of how retended data can be misappropriated. Incidents
such as these make users of social media services start to realize that all of their data are not
just used for their initial purpose. They learn that there are entities out there who have the
power to gain access to gathered datasets and the impertinence to abuse them. The Chilling
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effect is used to describe the consequences of peoples slowly increasing self-discipline and
restriction of their communication behavior due to becoming aware of digital surveillance
and panopticism [22], as found by Büchi et al. [23]. It is of concern that people tend to retreat
from public social media services in favor of closed, “antisocial” messaging groups [24],
Wilson [25].

However, social media data can not only be used to gain knowledge and, thus, power
over society. Social media data analytics in disaster management is an example for positive
reuse of social media data, but also an example for the direct dependence on it. The work of
humanitarian organizations relies on publicly available data, that is authentic and relevant.
In particular, VOSTs depend on public availability of social media data [26]. Therefore, the
gradual retreat of users from social media services must be prevented.

2.3. Geocode Systems

The concept presented in this paper includes utility of the geocode identification
concept geohash [27]. Similar to a quad tree [28], a geohash is a spatial data structure used
to represent a certain area on the globe in an alphanumeric representation. The structure is
based on a hierarchical discrete grid of four areas, that alternately follow the Z-order-curve
function [29]. The size of the area depends on the precision specified by the length of
the geohash.

There is a large range of geocode systems available. While many of them are tied
to a certain scope, e.g., postal codes, there is a list of general scope systems. Among
those, some of them are restricted by patents or tied to administrative divisions, defining,
e.g., only country codes, such as DE or UK, which lacks enough flexibility to define area
sizes. Within the remaining general grid-based geocode systems are geohashes, Google’s
“Plus codes” [30] and Yahoo’s now deprecated “Where on earth ID” [31]. Because their
representation is a simple string, their creation unambiguous and their implementation
independent of a private company, we decided to use geohashes as geocode system for the
representation of spatial information in our concept.

2.4. Privacy-Aware Data Storage

A common method to store data without leaking information about individual items
is Differential Privacy (DP) [32]. In its foundation, it adds randomness to a dataset. Random
data are indistinguishable from the real data and, therefore, cloaks the real data within
the set. The method though requires statistical knowledge about the scope of the real
data, in order to define the distribution of randomness [33]. With streaming data it is
impossible to make assumptions about its scope, since we can not look into the future.
Another drawback of DP is that it increases the size of the dataset, which would impair the
processing performance, as social media datasets are usually large by themselves.

Many other suggestions to the problem of privacy-aware data storage exist. Most
of them target the problem of preventing the storage provider from accessing the data.
Suggested approaches include encryption and fragmentation techniques [34–36]. The
goal of these approaches is to still have access to the original data if being in possession of
decryption keys. This carries the risk of exploitation by unauthorized personnel. Exemplary
scenarios range from accidentally pushed private keys to public repositories [37] to an issue
of a National Security Letter [38].

Our contribution to the issue of privacy-aware social media data storage focuses on
storing data without the subsequent ability to access individual items. It is based on an
algorithm called HyperLogLog (HLL), which is a cardinality estimator first presented by
Flajolet et al. [39]. Its fundamental strength is the ability to estimate the distinct count
of a multiset (its cardinality), and store it in a data structure, that does not allow the
extraction of individual elements. This is performed by storing only hashes of data items
instead of the original raw data and identifying them by counting leading zeros of the
binary representation of their hashes. The algorithm is able to predict how many distinct
items have been added to the HLL set, based on the maximum number of leading zeroes
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observed. This makes processing data using HLL very efficient in terms of processing time
and storage space.

Furthermore, it needs external knowledge to be able to identify the existence of single
items in the dataset [40]. For example, if the cardinality of a set does not change after
adding an item to it, it is obvious that it has already been inside the set. However, this
requires the knowledge of the item in beforehand. It is not possible to search for prior
unknown information in an HLL set, such as, for example, the user names of all the posts
that have been gathered.

The original HLL algorithm has been shown to have security issues and other short-
comings that can lead to large estimation errors or allow attacks on its result. However, the
authors also presented mitigation methods for the addressed issues and further improve-
ments to the algorithm [41–44].

In a case study carried out as a focus group discussion with VOST members [45], we
identified HLL as a valid and privacy-aware alternative to storing raw data in the presented
scenario. Within that publication, we also compared computed cardinalities of HLL sets
with the actual count values in the original data. Dunkel et al. [46] agree that the overall
accuracy is affected by several parameters, including the size of the data: the larger the set,
the more accurate the estimation. Desfontaines et al. [40] show that the estimation accuracy
directly relates to the overall privacy-preserving effect of HLL.

3. Concept

Based on pre-described fundamentals (see Section 2), our previous work on HLL [46,47]
and findings resulting from our case study [45], we present a concept to store and process
data from a real-time stream of social media posts in a way that protects from the side-effects
of data retention.

In addition to its unknown extent, the particular characteristic of real-time streaming
data is its ephemerality. Data come in and can be processed, but the next moment they are
gone and cannot be reconsidered, unless they are stored locally. However, according to our
research goals, the storage of collateral data should be prevented.

In this section, we first outline the term collateral data, as well as the purpose of geohash
locations in the concept. We then introduce the utility of the HLL technology to only store
necessary data. Finally, we classify the concept using an operational scenario.

3.1. Collateral Data

When utilizing some analytics software to monitor the occurrence of pre-defined terms,
conventional analytics tools would store the social media data in a database, to be able
to run further analytics and visualizations over it. Typically, relational or non-relational
database management systems are used ([18] p. 163). This procedure brings the side-effect
of storing collateral data, which are data that are not required to fulfil the task of computing
the post cardinality. An example of a data item for the occurrence of a well-known social
media post matching a search criteria is shown in Figure 1b. In addition to the location of
the post, it also includes information about the author, the date and time, as well as the
entire content of the post. These data can be used for example to identify the original creator
of the post, and, thus, for other purposes than originally intended, which we identify as
data retention (see Section 2.2).

To determine the cardinality of posts containing the term flood in a certain area, most
of the data shown in Figure 1b are not required. We know that the present post matches our
pre-defined term, because we had created a search rule for it (see Section 4) and, therefore,
all posts we receive will match the search term. The actual content of each post is not
necessary to store, consequentially. Furthermore, we neither require the time of creation
nor the author for each individual post to state the cardinality of all the posts.

In order to state the cardinality of posts, we do need to assign the posts some ID as
the unique identifier of each post. In our proof-of-concept implementation (see Section 4),
such an ID, is already provided by the Twitter API (red color in Figure 1). We also need the
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location data of each post (green color in Figure 1) in order to determine the location of the
potential flood incident. For any location-based social media data analysis, e.g., a VOST to
be able to localize potential disaster situations, the need for some sort of geo-referencing
data is essential. Our concept introduces a method to store these data in a way that it is
only useful to determine the post cardinality, the number of posts with occurrences of said
pre-defined terms.

user: ipsum58
date: 2022-03-20T16:33+01:00
geo:  51.05 13.67
text: Achtung Hochwasser: Der
      Weidigtbach tritt über
      die Ufer #flood
id:   135812

@ipsum58
Dresden

Achtung Hochwasser: der Weidigtbach
tritt über die Ufer #flood

20 Mar 1633

u31d

135812

HLL

a) Social Media Post b) Post Data c) GeoHash Encoding d) Database
Record

Cardinality
of posts in
Dresden

geohash(
  51.05 13.67,
  4
) = u31d

Figure 1. Social media data processing graph. (a) Example post. (b) The post’s social, temporal,
spatial (green), and topical data, and its hidden unique ID (red). (c) Encode the corresponding
geohash from the geo-coordinates. The result represents the area plotted by the rectangle over the
outlines of Dresden. (d) Store the post ID in the HLL set of the database record matching the geohash.

3.2. Geohash Locations

The concept is about determining the cardinality of posts for a certain area. To
sort individual posts into areas, the geo-location of a post is generalized by converting
the original location data to a geohash (see Section 2.3). Posts come with geo-location
information of multiple quality levels (see Section 4), each still representing a point value
(latitude, longitude). The concept requires the geodata to be converted to an area, so that
multiple posts can be associated with it. If each post had its own location point value, there
would be an individual database entry for every post (see Section 3.3), unless multiple
posts had been sent from the exact same place. Therefore, a suitable precision value must
be defined for the geocode along with the search term in our concept. If the precision is too
low and, thus, the area too large, there will be too many posts and potential incidents are
more difficult to locate. If the precision is too high and, thus, the area too small, there will
not be enough posts in an area to be able to determine anomalies in their occurrence. In
Figure 1c, the precision value is 4, so the resulting geohash has a length of four characters.

3.3. HyperLogLog Storage

We declare the spatial information (represented by a geohash) as the key characteristic
of a social media post. It is stored into the database in clear text, serving as the index of
the database record (see Figure 1d). The identifier (ID) of the post is in turn stored in a
HyperLogLog (HLL) set in relation to its geohash. Post IDs that arrive later in the stream
and match the same geohash will be added to this HLL set, which increases its cardinality
by one for each new post. The resulting HLL data structure represents all posts matching a
certain term from a certain area, from which it is impossible to derive the post IDs back
from it. Figure 1d depicts this procedure, showing the post ID “plunge” into the HLL set
(represented by a basin or sink).

Utilizing HLL, we do not store the post IDs itself, but only calculate hashes from them
and store them in an array of counters that represents the set of post IDs. Figure 2 shows an
exemplary database table structure with geohashes and post IDs. The geohash values each
represent an area, and the corresponding HLL sets represent the IDs of posts that occurred
in that area. Having a database with geohashes and their corresponding HLL set, as shown
in Figure 2, it is possible to compute the cardinality of the HLL set and, thus, determine the
number of posts in each area.
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flood
geohash id

w41s \x128b7fdf939b45ec2ef0ca

6yws \x128b7fbfd17eca803517d2

c29s \x128b7fe00ef312fcf023c9

75cs \x128b7fcc47a6c00361c5e7

Figure 2. Exemplary structure of a database table that stores all data referring to the pre-defined
term flood. It shows four records, each stands for one area represented by the geohash, and the
corresponding HLL set containing the post IDs.

The result of a set’s cardinality computation could as well be achieved by just in-
crementing an integer per seen post ID and storing the sum instead of an HLL set. The
significance about using the HLL algorithm instead, is that it provides the opportunity to
do set operations, such as unions and intersections, on the HLL sets. Both operations allow
quantitative evaluations of relationships between HLL sets and can useful for combinations
of multiple individual sets. Additionally, sets of multiple terms can be combined. The result
can, e.g., support VOSTs in specifying a disaster scenario (see Section 3.4). An intersection
of fire and forest sets could lead more precisely to disaster incidents than both terms on
their own. It still makes sense to monitor the terms individually in the first place, because,
for example, a combination of fire and accident can lead and different incidents than a
combination of forest and accident.

Furthermore, different terms could have the same meaning, for example flood, high
tide, wave, and tsunami could all refer to the same situation. So a union of HLL sets on
posts over these terms can increase the accuracy of a disaster detection (see Section 3.4).
Likewise, terms in different languages could also be monitored in combination. This
may, e.g., enable VOSTs to monitor larger, multiple languages involving areas, such as
border triangles, or including smaller countries, such as Benelux or the Baltics. Figure 3
emphasizes that the combination of different terms can lead to more accurate visualizations
and, therefore, more rational assessments of the situation.

� 1262

� 848

� 422

� 136

Cardinality

a) omicron b) omikron

c) omicron U omikron

Figure 3. Visualizing the cardinality of posts containing (a) the term omicron spelled with a C,
(b) omikron spelled with a K, and (c) the union of the sets, per area defined by geohash precision 4.
The union of the two datasets helps to understand that the early 2022 variant of COVID-19 is a
trending topic in more areas than what a consideration of each individual set suggests. Data from
Twitter, January through March 2022. Classification: Head/Tail Breaks [48].
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3.4. Scenario

In this subsection, we present our concept in an exemplary disaster management
scenario, in which a VOST passively monitors a real-time social media data stream (see
Section 2.1). A software system does the monitoring in a day-to-day routine and notifies
about peaks or anomalies in order to detect potential disasters. The VOST would define
a set of terms, which indicate potential disasters and, therefore, should be monitored for
occurrence within posts. There is an expected noise floor, namely an average occurrence
of these terms during normal times. For example, every hour there are between 50 and
500 posts in a certain area containing the term flood. The number of posts will normally
increase by a value in this range per hour. In our concept, we call the number of posts their
cardinality.

During a disaster, the occurrence of posts, including certain terms, and thus their
cardinality may increase by a recognizably higher amount than the average, for example
by 1238. For our concept, we propose the utility of a monitoring tool that checks the
cardinality in a defined time range, for example every hour. Visualizing the gain rate of
the post cardinality will result in a peak in the graph (see Figure 4). If the peak exceeds a
pre-defined threshold, it will trigger an alert. It may indicate a potential disaster situation
and a need for attention by the VOST.

Figure 4 shows an exemplary graph of the post cardinality gain over time and its
corresponding gain rate. It includes a pre-defined threshold of posts per time range set
to 500. At position 4, a large cardinality gain by 1238 posts occurs, which exceeds the
threshold. It triggers an alert for the VOST with the corresponding monitored term and the
threshold, for example “term flood has exceeded 500 posts per hour”.

Hours Cardinality Gain Rate
0 58 58
1 109 51
2 184 75
3 345 161
4 1583 1238
5 2036 453
6 2356 320
7 2495 139
8 2528 33
9 2607 79 0 1 2 3 4 5 6 7 8 9

0

500

1000

1500

2000

2500

3000
Cardinality
Gain Rate

Hours

Threshold

Alert

Figure 4. Post cardinality gain. The table on the left shows the cardinality gain per hour and its rate
accordingly. The chart on the right shows the chart visualization of the table. It outlines the threshold
through the dotted line at 500 posts per hour. The attention sign highlights the exceeding cardinality
gain rate and, thus, marks the point of alert.

Once the VOST is alerted for a peak in the cardinality gain for some pre-defined terms,
they may start their investigation on that matter. This usually includes browsing social
media services through their search functions in order to receive live occurrences of posts
relevant to the context [11]. This stage marks the end of our concept scenario.

4. Implementation

We created a proof-of-concept implementation for this concept called VGIsink [49]. It is
designed as an HTTP-based RESTful API [50] to ensure standard-compliant access for any
client application. While the proposed concept is dedicated to work generically with data
from any social media platform, the VGIsink implementation is restricted to compatibility
with Twitter.

Setting up a working example requires to gain access to the Twitter API in order to
curate a custom real-time stream of posts. The filtered stream feature provided through the
Twitter API [51] allows to define rules with terms to be monitored to curate such a custom
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stream. Adding the has:geo operator to each term ensures that the stream is limited to
posts that contain geo-information. Furthermore, the geohash precision value must be
defined for each rule, in order to set the size of the areas in which post cardinalities should
be computed. This is out of scope of the Twitter API and, thus, we made it part of VGIsink.

Within our implementation, we adopted the term rule from the Twitter API to define
an individual target to monitor. A rule is defined by a term and a precision value. For each
rule, a table is created in the application database, following the structure described in
Figure 2. Every arriving post in the real-time stream is defined by its geo-information. It
can be either a specific coordinate with a latitude and a longitude value or a bounding box
describing a more generic place. In case of a specific coordinate, it will be transferred to the
corresponding geohash according to the defined precision value. A bounding box will be
transferred into a list of all geohashes, whose center is inside the bounding box. We assume
relevance of a post for the entire place, so the cardinality will increment for each geohash
in that list. The geohash will be stored in clear text as the table record’s primary key. The
ID of the post will be added to an HLL set in the table record corresponding to the geohash.
The VGIsink implementation utilizes the PostgreSQL HLL implementation [52].

Reading the resulting data means querying a certain VGIsink rule. A query to such a
rule returns a JSON-formed list of areas and their corresponding cardinality. Each area is
converted from the geohash to a Postgis geometry [53] and then returned as a standard
GeoJSON [54] compliant coordinate, as shown in Listing 1. The cardinality is calculated
using the according PostgreSQL HLL function.

A list of areas with their corresponding cardinality can be visualized for example in
a mapping application. Figure 3 shows an example implementation using Leaflet [55]. It
features a number of rectangular areas, each representing a geohash. The color of a rectangle
represents its cardinality, where lighter means lower and darker means higher values.

Listing 1. Example of a list of GeoJSON objects with the corresponding cardinality.

[ "type": "Polygon", "cardinality": 108, "coordinates": [ [ [ 5.625, 49.21875 ], [ 5.625, 50.625 ],
[ 7.03125, 50.625 ], [ 7.03125, 49.21875 ], [ 5.625, 49.21875 ] ] ] ]

5. Discussion

The rationale behind the concept presented in this paper is to provide a concept to
utilize the HLL technology in order to prevent unnecessary data retention. In the following
we evaluate the concept, discuss its scope and go into a number of potential alternative
approaches.

The conventional way to store social media data prior to analytic processes is to just
store the raw data without any further preparation. This, of course, leads to data retention
as the major point of criticism (see Section 2.2). With DP we already named a potential
alternative strategy to store data in a privacy-aware way in Section 2.4, though we have
also declared it unsuitable in the scenario of storing social media data for its characteristics
of enlarging the already large amount of data even further. In addition, defining the
distribution of randomness is not possible, if the scope of the data is unknown, which is
true for a stream of data whose end is indefinite.

A trivial alternative would be to only store the number of posts matching a certain
rule as an integer in the database. This would not only reduce the data footprint immensely
and prevent the possibility to make statements about individual items within the set.
However, it only allows basic arithmetic functions and takes away the opportunity to do
set operations, such as unions and intersections, over multiple datasets. We do not claim
that using HLL to solve the problem is the only alternative. The low storage footprint and
the fast processing speed make it a very suitable method to process social media data with
their usual characteristics of being really extensive.

While we introduced the concept using only minimal examples in Sections 3 and 4, it
is actually intended to operate on a much larger number of terms and rules, respectively. It
could be hundreds or even thousands of them, the number of rules is potentially unlimited.
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It is possible to consider only posts for one HLL set, that contain two or more specific
terms, or if a combination of events from different facets occur, e.g., a term occurs during
a pre-defined time range. Search terms are also not limited to nouns as introduced, but
they can include verbs, adjectives, or any other kind of words. As described in Section 3.3,
the combination of terms may sharpen their semantics and enables a more precise dataset.
Preselecting relevant terms could be automated by a suitable topic modeling technique [56],
to find terms with similar meanings automatically. Nevertheless, choosing the right terms
to redeem good results needs the experience of professionals, which members of VOSTs
are expected to bring along. If new topics arise on social media, new terms appear along,
e.g., covid, new rules must be created for each.

A considerable extension to this concept might feature automatic adjustments of the
geohash precision value, e.g., once a certain cardinality is exceeded. A higher precision
value would split the area into smaller pieces and, therefore, reduce the size of each
area. Resulting HLL sets can then be unified or intersected with other sets on their own.
This argumentation is only theoretical, and no experiments have been performed on this
approach. The concept relies on the experience of VOSTs to determine a sane value.

The most important limitation of the concept is the lack of ability to perform ex-
ploratory or otherwise selective qualitative analysis. It is not intended by design to be able
to investigate for clues within a dataset, that have not been planned to discover. For further
investigation on individual incidents that this concept can detect, VOSTs derive to other
tools or applications provided by social media platforms themselves anyway [45].

With respect to common facets [57], this concept only considers spatial information
in terms of collected data. In combination with other data spatial information is deemed
privacy-relevant [58]. However, as shown in Figure 2, spatial information in the form of the
geohash is the only data stored in clear text. The social facet, information about the user,
is not stored as per definition of the concept. Temporal information can only be retrieved,
if cardinalities are queried periodically and stored, e.g., in a time series database, such as
Prometheus [59] or InfluxDB [60].

The ID of a post stored in an HLL set along with the corresponding geohash represents
the entire social media data item. It can not be retrieved from the HLL set per definition
of the HLL algorithm. However, if the ID of a post is known, it is possible to evaluate,
whether it is included in an HLL set. An attacker only needs to calculate the cardinality
of the set, then add the post ID to the set and then calculate the cardinality again. If it has
not changed, then the post ID has been in the set before. This shows that HLL itself cannot
preserve privacy, if the attacker has further information [40]. It does not impair the concept
though, because the described situation is not considered an attack vector. Attempts to
discover single items in an HLL set of social media post IDs is regarded unnecessary effort.
Since the data are publicly available from the social media services, attackers can also
obtain them from there directly. An exception to this may be a case in which a social media
post has been deleted online, while its post ID is still known to the attacker. However,
this will only prove that the post has existed. This is trivial, if the attacker is already in
possession of the ID. No other content from the post can be recovered from the HLL set.
Adversarial perturbations of the input stream to alter the cardinality estimation of an HLL
set through the exploitation of security flaws (see Section 2.4) are also of purely theoretical
use. This concept aims to prevent data retention and attacks to the entirety of a dataset. For
example, it prevents revealing all the user names, that have posted in a certain area. This
can be crucial in relevant situations of disaster management. Exemplary situations with
special privacy interest for users include refugee movements, demonstrations, and riots,
among others.

Edge cases involve situations, in which, for example, there is only one post within a
certain area. It is obvious to unveil its identity, if the cardinality of a geohash is 1 and the
attacker can look up the social media service for posts within that area, assuming it has not
been deleted by the time. This can be mitigated in advance by defining a smaller geohash
precision value and, thus, choosing a larger area, accepting a lower accuracy of the overall



ISPRS Int. J. Geo-Inf. 2023, 12, 60 11 of 13

dataset. Furthermore, applying filter lists on specific sensitive context factors can mitigate
privacy invasions [61].

In future research, this concept can gain its effectivity in combination with other
techniques. Since social media data include more and more images and videos today,
pattern recognition can help detect relevant posts for disaster situations [62]. This can
contribute to more precise post cardinalities and, therefore, help VOSTs to improve the
groundwork for their analysis. More advanced example implementations with other than
the spatial facet being the key for HLL sets could demonstrate the full potential of this
technology.

6. Conclusions

In this paper, we have introduced a method to prevent collateral data when storing
real-time social media data streams for analytic purposes. Our method proposes the usage
of HyperLogLog (HLL), a cardinality estimation algorithm. While this technology has
been applied in many contexts for the purpose of performance improvements, we newly
introduced it as a method to prevent unnecessary data retention and thus protect privacy.

We embedded the method in a disaster management scenario, in which virtual opera-
tion support teams define certain terms to be monitored for occurrence and get alerted at a
certain threshold. This scenario shows the usefulness of our method exemplarily for any
data analysis scenario, wherein results are based only on statistical values and there is no
necessity to refer to individual items in the dataset.

However, the HLL algorithm does not protect from proving existence of individual
items in the set, if external knowledge is applied. The concept prevents from gaining access
to previously unknown individual items. Limitations further apply for exploratory data
analysis on the stored data, since the only information stored is the occurrence of a post in
a certain area. This limitation is intentional for the sake of preventing unnecessary data
retention of social media data and the risk of abuse, loss, or public exposure of data that
were unnecessary to gather in the first place.
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